969 resultados para Remote-sensing Data
Resumo:
Many regions of the world, including inland lakes, present with suboptimal conditions for the remotely sensed retrieval of optical signals, thus challenging the limits of available satellite data-processing tools, such as atmospheric correction models (ACM) and water constituent-retrieval (WCR) algorithms. Working in such regions, however, can improve our understanding of remote-sensing tools and their applicabil- ity in new contexts, in addition to potentially offering useful information about aquatic ecology. Here, we assess and compare 32 combinations of two ACMs, two WCRs, and three binary categories of data quality standards to optimize a remotely sensed proxy of plankton biomass in Lake Kivu. Each parameter set is compared against the available ground-truth match-ups using Spearman's right-tailed ρ. Focusing on the best sets from each ACM-WCR combination, their performances are discussed with regard to data distribution, sample size, spatial completeness, and seasonality. The results of this study may be of interest both for ecological studies on Lake Kivu and for epidemio- logical studies of disease, such as cholera, the dynamics of which has been associated with plankton biomass in other regions of the world.
Resumo:
Com características morfológicas e edafo-climáticas extremamente diversificadas, a ilha de Santo Antão em Cabo Verde apresenta uma reconhecida vulnerabilidade ambiental a par de uma elevada carência de estudos científicos que incidam sobre essa realidade e sirvam de base à uma compreensão integrada dos fenómenos. A cartografia digital e as tecnologias de informação geográfica vêm proporcionando um avanço tecnológico na colecção, armazenamento e processamento de dados espaciais. Várias ferramentas actualmente disponíveis permitem modelar uma multiplicidade de factores, localizar e quantificar os fenómenos bem como e definir os níveis de contribuição de diferentes factores no resultado final. No presente estudo, desenvolvido no âmbito do curso de pós-graduação e mestrado em sistemas de Informação geográfica realizado pela Universidade de Trás-os-Montes e Alto Douro, pretende-se contribuir para a minimização do deficit de informação relativa às características biofísicas da citada ilha, recorrendo-se à aplicação de tecnologias de informação geográfica e detecção remota, associadas à análise estatística multivariada. Nesse âmbito, foram produzidas e analisadas cartas temáticas e desenvolvido um modelo de análise integrada de dados. Com efeito, a multiplicidade de variáveis espaciais produzidas, de entre elas 29 variáveis com variação contínua passíveis de influenciar as características biofísicas da região e, possíveis ocorrências de efeitos mútuos antagónicos ou sinergéticos, condicionam uma relativa complexidade à interpretação a partir dos dados originais. Visando contornar este problema, recorre-se a uma rede de amostragem sistemática, totalizando 921 pontos ou repetições, para extrair os dados correspondentes às 29 variáveis nos pontos de amostragem e, subsequente desenvolvimento de técnicas de análise estatística multivariada, nomeadamente a análise em componentes principais. A aplicação destas técnicas permitiu simplificar e interpretar as variáreis originais, normalizando-as e resumindo a informação contida na diversidade de variáveis originais, correlacionadas entre si, num conjunto de variáveis ortogonais (não correlacionadas), e com níveis de importância decrescente, as componentes principais. Fixou-se como meta a concentração de 75% da variância dos dados originais explicadas pelas primeiras 3 componentes principais e, desenvolveu-se um processo interactivo em diferentes etapas, eliminando sucessivamente as variáveis menos representativas. Na última etapa do processo as 3 primeiras CP resultaram em 74,54% da variância dos dados originais explicadas mas, que vieram a demonstrar na fase posterior, serem insuficientes para retratar a realidade. Optou-se pela inclusão da 4ª CP (CP4), com a qual 84% da referida variância era explicada e, representando oito variáveis biofísicas: a altitude, a densidade hidrográfica, a densidade de fracturação geológica, a precipitação, o índice de vegetação, a temperatura, os recursos hídricos e a distância à rede hidrográfica. A subsequente interpolação da 1ª componente principal (CP1) e, das principais variáveis associadas as componentes CP2, CP3 e CP4 como variáveis auxiliares, recorrendo a técnicas geoestatística em ambiente ArcGIS permitiu a obtenção de uma carta representando 84% da variação das características biofísicas no território. A análise em clusters validada pelo teste “t de Student” permitiu reclassificar o território em 6 unidades biofísicas homogéneas. Conclui-se que, as tecnologias de informação geográfica actualmente disponíveis a par de facilitar análises interactivas e flexíveis, possibilitando que se faça variar temas e critérios, integrar novas informações e introduzir melhorias em modelos construídos com bases em informações disponíveis num determinado contexto, associadas a técnicas de análise estatística multivariada, possibilitam, com base em critérios científicos, desenvolver a análise integrada de múltiplas variáveis biofísicas cuja correlação entre si, torna complexa a compreensão integrada dos fenómenos.
Resumo:
This paper presents a differential synthetic apertureradar (SAR) interferometry (DIFSAR) approach for investigatingdeformation phenomena on full-resolution DIFSAR interferograms.In particular, our algorithm extends the capabilityof the small-baseline subset (SBAS) technique that relies onsmall-baseline DIFSAR interferograms only and is mainly focusedon investigating large-scale deformations with spatial resolutionsof about 100 100 m. The proposed technique is implemented byusing two different sets of data generated at low (multilook data)and full (single-look data) spatial resolution, respectively. Theformer is used to identify and estimate, via the conventional SBAStechnique, large spatial scale deformation patterns, topographicerrors in the available digital elevation model, and possibleatmospheric phase artifacts; the latter allows us to detect, onthe full-resolution residual phase components, structures highlycoherent over time (buildings, rocks, lava, structures, etc.), as wellas their height and displacements. In particular, the estimation ofthe temporal evolution of these local deformations is easily implementedby applying the singular value decomposition technique.The proposed algorithm has been tested with data acquired by theEuropean Remote Sensing satellites relative to the Campania area(Italy) and validated by using geodetic measurements.
Resumo:
The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.
Resumo:
Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP) data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes - caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes) - and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1) calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2) correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3) topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy) using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be implemented in an operational environment.
Resumo:
This paper describes the development and applications of a super-resolution method, known as Super-Resolution Variable-Pixel Linear Reconstruction. The algorithm works combining different lower resolution images in order to obtain, as a result, a higher resolution image. We show that it can make significant spatial resolution improvements to satellite images of the Earth¿s surface allowing recognition of objects with size approaching the limiting spatial resolution of the lower resolution images. The algorithm is based on the Variable-Pixel Linear Reconstruction algorithm developed by Fruchter and Hook, a well-known method in astronomy but never used for Earth remote sensing purposes. The algorithm preserves photometry, can weight input images according to the statistical significance of each pixel, and removes the effect of geometric distortion on both image shape and photometry. In this paper, we describe its development for remote sensing purposes, show the usefulness of the algorithm working with images as different to the astronomical images as the remote sensing ones, and show applications to: 1) a set of simulated multispectral images obtained from a real Quickbird image; and 2) a set of multispectral real Landsat Enhanced Thematic Mapper Plus (ETM+) images. These examples show that the algorithm provides a substantial improvement in limiting spatial resolution for both simulated and real data sets without significantly altering the multispectral content of the input low-resolution images, without amplifying the noise, and with very few artifacts.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
In this paper, we develop a data-driven methodology to characterize the likelihood of orographic precipitation enhancement using sequences of weather radar images and a digital elevation model (DEM). Geographical locations with topographic characteristics favorable to enforce repeatable and persistent orographic precipitation such as stationary cells, upslope rainfall enhancement, and repeated convective initiation are detected by analyzing the spatial distribution of a set of precipitation cells extracted from radar imagery. Topographic features such as terrain convexity and gradients computed from the DEM at multiple spatial scales as well as velocity fields estimated from sequences of weather radar images are used as explanatory factors to describe the occurrence of localized precipitation enhancement. The latter is represented as a binary process by defining a threshold on the number of cell occurrences at particular locations. Both two-class and one-class support vector machine classifiers are tested to separate the presumed orographic cells from the nonorographic ones in the space of contributing topographic and flow features. Site-based validation is carried out to estimate realistic generalization skills of the obtained spatial prediction models. Due to the high class separability, the decision function of the classifiers can be interpreted as a likelihood or susceptibility of orographic precipitation enhancement. The developed approach can serve as a basis for refining radar-based quantitative precipitation estimates and short-term forecasts or for generating stochastic precipitation ensembles conditioned on the local topography.
Resumo:
ABSTRACT In recent years, geotechnologies as remote and proximal sensing and attributes derived from digital terrain elevation models indicated to be very useful for the description of soil variability. However, these information sources are rarely used together. Therefore, a methodology for assessing and specialize soil classes using the information obtained from remote/proximal sensing, GIS and technical knowledge has been applied and evaluated. Two areas of study, in the State of São Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), conventional pedological mapping was done and from the soil classes found patterns were obtained with the following information: a) spectral information (forms of features and absorption intensity of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the area (according to each soil type); b) obtaining equations for determining chemical and physical properties of the soil from the relationship between the results obtained in the laboratory by the conventional method, the levels of chemical and physical attributes with the spectral data; c) supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). Finally, we developed a conventional pedological mapping in area 2 to which was compared with a digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second category level and became less useful in the categorical level 3 (37 % accuracy).
Resumo:
When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.
Resumo:
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
Resumo:
Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species' micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions - and therefore local management - compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.
Resumo:
The primary purpose of this project was to assess the potential of a nondestructive remote sensing system, specifically, ground penetrating subsurface interface radar, for identification and evaluation of D-cracking pavement failures. A secondary purpose was to evaluate the effectiveness of this technique for locating voids under pavements and determining the location of steel reinforcement. From the data collected and the analysis performed to date, the following conclusions can be made regarding the ground penetrating radar system used for this study: (1) steel reinforcement can be accurately located; (2) pavement thickness can be determined; (3) distressed areas in pavements can be located and broadly classified as to severity of deterioration; (4) voids under pavements can be located; and (5) higher resolution recording equipment is required to accurately determine both the thickness of sound pavement remaining over distressed areas and the depth of void areas under pavements.