887 resultados para Remote sensing images
Resumo:
Remote sensing information from spaceborne and airborne platforms continues to provide valuable data for different environmental monitoring applications. In this sense, high spatial resolution im-agery is an important source of information for land cover mapping. For the processing of high spa-tial resolution images, the object-based methodology is one of the most commonly used strategies. However, conventional pixel-based methods, which only use spectral information for land cover classification, are inadequate for classifying this type of images. This research presents a method-ology to characterise Mediterranean land covers in high resolution aerial images by means of an object-oriented approach. It uses a self-calibrating multi-band region growing approach optimised by pre-processing the image with a bilateral filtering. The obtained results show promise in terms of both segmentation quality and computational efficiency.
Resumo:
La teledetección o percepción remota (remote sensing) es la ciencia que abarca la obtención de información (espectral, espacial, temporal) sobre un objeto, área o fenómeno a través del análisis de datos adquiridos por un dispositivo que no está en contacto con el elemento estudiado. Los datos obtenidos a partir de la teledetección para la observación de la superficie terrestre comúnmente son imágenes, que se caracterizan por contar con un sinnúmero de aplicaciones que están en continua evolución, por lo cual para solventar los constantes requerimientos de nuevas aplicaciones a menudo se proponen nuevos algoritmos que mejoran o facilitan algún proceso en particular. Para el desarrollo de dichos algoritmos, es preciso hacer uso de métodos matemáticos que permitan la manipulación de la información con algún fin específico. Dentro de estos métodos, el análisis multi-resolución se caracteriza por permitir analizar una señal en diferentes escalas, lo que facilita trabajar con datos que puedan tener resoluciones diferentes, tal es el caso de las imágenes obtenidas mediante teledetección. Una de las alternativas para la implementación de análisis multi-resolución es la Transformada Wavelet Compleja de Doble Árbol (DT-CWT). Esta transformada se implementa a partir de dos filtros reales y se caracteriza por presentar invariancia a traslaciones, precio a pagar por su característica de no ser críticamente muestreada. A partir de las características de la DT-CWT se propone su uso en el diseño de algoritmos de procesamiento de imagen, particularmente imágenes de teledetección. Estos nuevos algoritmos de procesamiento digital de imágenes de teledetección corresponden particularmente a fusión y detección de cambios. En este contexto esta tesis presenta tres algoritmos principales aplicados a fusión, evaluación de fusión y detección de cambios en imágenes. Para el caso de fusión de imágenes, se presenta un esquema general que puede ser utilizado con cualquier algoritmo de análisis multi-resolución; este algoritmo parte de la implementación mediante DT-CWT para luego extenderlo a un método alternativo, el filtro bilateral. En cualquiera de los dos casos la metodología implica que la inyección de componentes pueda realizarse mediante diferentes alternativas. En el caso del algoritmo de evaluación de fusión se presenta un nuevo esquema que hace uso de procesos de clasificación, lo que permite evaluar los resultados del proceso de fusión de forma individual para cada tipo de cobertura de uso de suelo que se defina en el proceso de evaluación. Esta metodología permite complementar los procesos de evaluación tradicionales y puede facilitar el análisis del impacto de la fusión sobre determinadas clases de suelo. Finalmente, los algoritmos de detección de cambios propuestos abarcan dos enfoques. El primero está orientado a la obtención de mapas de sequía en datos multi-temporales a partir de índices espectrales. El segundo enfoque propone la utilización de un índice global de calidad espectral como filtro espacial. La utilización de dicho filtro facilita la comparación espectral global entre dos imágenes, esto unido a la utilización de umbrales, conlleva a la obtención de imágenes diferencia que contienen la información de cambio. ABSTRACT Remote sensing is a science relates to information gathering (spectral, spatial, temporal) about an object, area or phenomenon, through the analysis of data acquired by a device that is not in contact with the studied item. In general, data obtained from remote sensing to observe the earth’s surface are images, which are characterized by having a number of applications that are constantly evolving. Therefore, to solve the constant requirements of applications, new algorithms are proposed to improve or facilitate a particular process. With the purpose of developing these algorithms, each application needs mathematical methods, such as the multiresolution analysis which allows to analyze a signal at different scales. One of the options is the Dual Tree Complex Wavelet Transform (DT-CWT) which is implemented from two real filters and is characterized by invariance to translations. Among the advantages of this transform is its successful application in image fusion and change detection areas. In this regard, this thesis presents three algorithms applied to image fusion, assessment for image fusion and change detection in multitemporal images. For image fusion, it is presented a general outline that can be used with any multiresolution analysis technique; this algorithm is proposed at first with DT-CWT and then extends to an alternative method, the bilateral filter. In either case the method involves injection of components by various means. For fusion assessment, the proposal is focused on a scheme that uses classification processes, which allows evaluating merger results individually for each type of land use coverage that is defined in evaluation process. This methodology allows complementing traditional assessment processes and can facilitate impact analysis of the merger on certain kinds of soil. Finally, two approaches of change detection algorithms are included. The first is aimed at obtaining drought maps in multitemporal data from spectral indices. The second one takes a global index of spectral quality as a spatial filter. The use of this filter facilitates global spectral comparison between two images and by means of thresholding, allows imaging containing change information.
Resumo:
Este trabalho tem por finalidade mostrar a aplicação e a utilização de um aeromodelo elétrico de asa fixa, também conhecido como veículo aéreo não tripulado (VANT), com controle manual ou automático, para coleta de dados e imagens em propriedades rurais, com a premissa de auxiliar os gestores no processo de gestão e tomada de decisão. A metodologia utilizada para a realização das coletas foi feita por meio de voos programados em dias e condições diferentes, para verificação e análise de desempenho do aeromodelo. Os resultados obtidos com os voos foram acima do esperado, gerando excelentes imagens e dados confiáveis. Sendo assim, pôde-se concluir que a utilização de VANTs, em coletas de dados e imagens em propriedades rurais foi satisfatória e auxiliou os gestores no processo de gerenciamento e rotacionamento de animais no pasto, uma vez que as imagens permitiram uma boa visualização e o aeromodelo desenvolvido cumpriu o seu objetivo com bom desempenho e agilidade.
Identificação de padrões de uso do solo urbano em São Paulo/SP utilizando parâmetros de variogramas.
Resumo:
As imagens de alta resolução espacial impulsionaram os estudos de Sensoriamento Remoto em ambientes urbanos, já que elas permitem uma melhor distinção dos elementos que compõem esse ambiente tão heterogêneo. Técnicas de Geoestatística são cada vez mais utilizadas em estudos de Sensoriamento Remoto e o variograma é uma importante ferramenta de análise geoestatística, pois permitem entender o comportamento espacial de uma variável regionalizada, neste caso, os níveis de cinza de uma imagem de satélite. O presente trabalho pretende avaliar a proposta metodológica que consiste em identificar padrões residenciais urbanos de três classes de uso e ocupação do solo por meio da análise dos valores apresentados pelos parâmetros, alcance, patamar e efeito pepita de um variograma. A hipótese é que os valores correspondentes a esses parâmetros representem o comportamento espectral padrão de cada classe e, portando, indicam que há um padrão na organização espacial de cada uma das classes. Para a presente pesquisa foram utilizadas imagem IKONOS 2002, e a classificação de uso e ocupação do solo da sub-bacia do córrego Bananal na bacia do Rio Cabuçu de Baixo em São Paulo SP. Amostras das imagens de cada classe foram extraídas e os valores de nível de cinza em cada pixel foram utilizados para calcular os variogramas. Após análise dos resultados obtidos, apenas o parâmetro alcance foi levado em consideração, pois é através desse parâmetro que se observa o grau de homogeneidade de cada amostra. Os valores de alcance obtidos nos cálculos dos variogramas identificaram com melhor precisão a classe Conjuntos Residenciais que é uma classe com padrões e características singulares, já a identificação das classes Ocupação Densa Regular e Ocupação Densa Irregular não obteve uma precisão boa, sendo que essas classes são similares em diversos aspectos.
Resumo:
En este trabajo se presentan los sistemas radar satélite y terrestres, así como los métodos de análisis de imágenes radar clásicos y avanzados para la investigación de los movimientos del terreno, haciendo énfasis en la subsidencia y los movimientos de ladera. Para ello en primer lugar se describen los distintos sensores radar disponibles así como las principales características de las imágenes radar generadas. A continuación se detallan los aspectos fundamentales de la interferometría diferencial, de los distintos métodos de interferometría diferencial avanzada y del radar terrestre. Finalmente se presentan los resultados obtenidos en distintas zonas de estudio: la subsidencia por explotación del acuífero en el área metropolitana de Murcia, la subsidencia minera y los movimientos de ladera de la Sierra de Cartagena, los movimientos de ladera de la cuenca del río Gállego y el deslizamiento del Portalet.
Resumo:
A set of ten RADARSAT-2 images acquired in fully polarimetric mode over a test site with rice fields in Seville, Spain, has been analyzed to extract the main features of the C-band radar backscatter as a function of rice phenology. After observing the evolutions versus phenology of different polarimetric observables and explaining their behavior in terms of scattering mechanisms present in the scene, a simple retrieval approach has been proposed. This algorithm is based on three polarimetric observables and provides estimates from a set of four relevant intervals of phenological stages. The validation against ground data, carried out at parcel level for a set of six stands and up to nine dates per stand, provides a 96% rate of coincidence. Moreover, an equivalent compact-pol retrieval algorithm has been also proposed and validated, providing the same performance at parcel level. In all cases, the inversion is carried out by exploiting a single satellite acquisition, without any other auxiliary information.
Resumo:
In this letter, a new approach for crop phenology estimation with remote sensing is presented. The proposed methodology is aimed to exploit tools from a dynamical system context. From a temporal sequence of images, a geometrical model is derived, which allows us to translate this temporal domain into the estimation problem. The evolution model in state space is obtained through dimensional reduction by a principal component analysis, defining the state variables, of the observations. Then, estimation is achieved by combining the generated model with actual samples in an optimal way using a Kalman filter. As a proof of concept, an example with results obtained with this approach over rice fields by exploiting stacks of TerraSAR-X dual polarization images is shown.
Resumo:
Information of crop phenology is essential for evaluating crop productivity. In a previous work, we determined phenological stages with remote sensing data using a dynamic system framework and an extended Kalman filter (EKF) approach. In this paper, we demonstrate that the particle filter is a more reliable method to infer any phenological stage compared to the EKF. The improvements achieved with this approach are discussed. In addition, this methodology enables the estimation of key cultivation dates, thus providing a practical product for many applications. The dates of some important stages, as the sowing date and the day when the crop reaches the panicle initiation stage, have been chosen to show the potential of this technique.
Resumo:
The phenological stages of onion fields in the first year of growth are estimated using polarimetric observables and single-polarization intensity channels. Experiments are undertaken on a time series of RADARSAT-2 C-band full-polarimetric synthetic aperture radar (SAR) images collected in 2009 over the Barrax region, Spain, where ground truth information about onion growth stages is provided by the European Space Agency (ESA)-funded agricultural bio/geophysical retrieval from frequent repeat pass SAR and optical imaging (AgriSAR) field campaign conducted in that area. The experimental results demonstrate that polarimetric entropy or copolar coherence when used jointly with the cross-polarized intensity allows unambiguously distinguishing three phenological intervals.
Resumo:
The coherent nature of the acquisition by TerraSAR-X of both copolar channels (HH and VV) enables the generation of many different polarimetric observables with physical interpretation, as have recently been used for monitoring rice fields. In this letter, the influence of incidence angle upon these polarimetric observables is analyzed by comparing three stacks of images that were acquired simultaneously at different incidence angles (22°, 30°, and 40°) during a whole cultivation campaign. We show that the response of observables related to dominance (entropy, ratios of components) and type of scattering mechanisms (alpha angles) is not greatly influenced by incidence angle at some stages: early and advanced vegetative phases, and maturation. Moreover, the acquisition geometry drives the sensitivity to the presence of the initial stems and tillers, being detected earlier at shallower angles. This analysis is a necessary step before studying potential methodologies for combining different orbits and beams for reducing the time between acquisitions for monitoring purposes.
Resumo:
Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.
Resumo:
In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.
Resumo:
Final report; April 1978.
Resumo:
Final report; April 1978.