883 resultados para Regulation of metabolite
Resumo:
The purpose of this paper is to evaluate the current financial regulation of Brazil, with emphasis on the changes that have occurred after the 2008 global crisis. Before that, this introduction presents the analytical perspective that will be used to think over the financial regulation of an emerging country, such as Brazil.
Resumo:
O presente estudo busca analisar o quadro regulatório internacional referente a medidas cambiais que trazem impactos no comércio. O artigo pretende explorar como a questão do câmbio se relaciona à OMC e afeta seus instrumentos e princípios para, em seguida, buscar dispositivos nos Acordos da OMC que poderiam ser aplicados à questão cambial a fim de reequilibrar os impactos causados pelos desalinhamentos cambiais no comércio internacional
Resumo:
The present research describes an efficient procedure to obtain high levels of trypsinogen and chymotrypsinogen by using a simple, rapid, and easily reproducible method. The extraction process and the time-course of activation of zymogens can be carried out in a single laboratory period, without sophisticated equipment. The main objective was to prepare a laboratory class that would stimulate student interest in enzyme regulation, exploring the fact that the catalytic activity of some enzymes is regulated by different mechanisms. The regulation of proteolytic enzymes requires the synthesis of an inactive zymogen and its being irreversibly switched on by specific proteolytic cleavage.
Resumo:
The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through alpha-adrenergic receptors. Injection of phentolamine gave rise to a pronounced vasodilatation (systemic conductance (G(sys)) more than doubled), while injection of propranolol caused a systemic vasoconstriction, pointing to a potent alpha-adrenergic, and a weaker beta-adrenergic tone in the systemic vasculature of Crotalus. Overall, the pulmonary vasculature was far less responsive to adrenergic stimulation than the systemic circulation. Adrenaline caused a small but non-significant pulmonary vasodilatation and there was tendency of reducing this dilatation after either phentolamine or propranolol. Injection of phentolamine increased pulmonary conductance (G(pul)), while injection of propranolol produced a small pulmonary constriction, indicating that alpha-adrenergic and beta-adrenergic receptors contribute to a basal regulation of the pulmonary vasculature. Our results suggest adrenergic regulation of the systemic vasculature, rather than the pultrionary, may be an important factor in the development of intracardiac shunts. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The functional role of nitric oxide (NO) was investigated in the systemic and pulmonary circulations of the South American rattlesnake, Crotalus durissus terrificus. Bolus, intra-arterial injections of the NO donor, sodium nitroprusside (SNP) caused a significant systemic vasodilatation resulting in a reduction in systemic resistance (Rsys). This response was accompanied by a significant decrease in systemic pressure and a rise in systemic blood flow. Pulmonary resistance (Rpul) remained constant while pulmonary pressure (Ppul) and pulmonary blood flow (Qpul) decreased. Injection of L-Arginine (L-Arg) produced a similar response to SNP in the systemic circulation, inducing an immediate systemic vasodilatation, while Rpul was unaffected. Blockade of NO synthesis via the nitric oxide synthase inhibitor, L-NAME, did not affect haemodynamic variables in the systemic circulation, indicating a small contribution of NO to the basal regulation of systemic vascular resistance. Similarly, Rpul and Qpul remained unchanged, although there was a significant rise in Ppul. Via injection of SNP, this study clearly demonstrates that NO causes a systemic vasodilatation in the rattlesnake, indicating that NO may contribute in the regulation of systemic vascular resistance. In contrast, the pulmonary vasculature seems far less responsive to NO.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The rat tapeworm, Hymenolepis diminuta, induces mastocytosis, hypertrophy of enteric smooth muscle, alteration of enteric myoelectric activity, and slowed enteric transit of the rat host's intestine. This report examines the resolution of both tapeworm-induced mastocytosis and tissue changes during the period following removal of the tapeworm with Praziquantel (PZQ). The dynamics of the mucosal mast cell (MMC) population following removal of the tapeworms was assessed by histochemical identification of MMC and morphometric techniques. As a possible mechanism of MMC population regulation, MMC apoptosis was examined over the same experimental period using the in situ nick end labeling of fragmented DNA (TUNEL). Shifts in MMC numbers were correlated with functional and morphological changes of the intestine following removal of the adult-stage tapeworm. Ileal tissues from rats infected 32 days with H. diminuta (the beginning of plateau phase of tapeworm-induced chronic mastocytosis) were harvested 1, 2, 3, and 4 weeks after the PZQ treatment. Control ilea were obtained either from rats which were never infected and never treated with PZQ or from rats infected with H, diminuta for 32 days but not treated with PZQ. In order to detect MMC and apoptosis, tissue sections of ileum were doubled stained sequentially with Astra blue for MMC granules followed by a modification of the TUNEL technique. No alteration in MMC numbers were observed in PZQ-treated animals until 3 weeks after the removal of the tapeworms. The decline of MMC occurred in the mucosa and submucosa. MMC numbers first approached uninfected control levels at 4 weeks posttreatment. Coincident with the decline in mucosal MMC numbers, the rate of MMC entering apoptosis also declined. Simultaneously, ileal smooth muscle layers, hypertrophied by infection, and mucosal structures began the process of involution and atrophy. Apoptosis of MMC in the submucosa and muscularis mucosa was not detected. In conclusion, H. diminuta elicited mastocytosis and increased thickness of both mucosa and muscularis externa do not begin a decline toward control Values until 3 weeks after the parasites are gone and normal intestinal motility is restored. These data are consistent with the lack of MMC mediation of altered motility, and the decline in the rate of MMC apoptosis at 3 weeks post-PZQ suggests that apoptosis may play an important role in the involution of tapeworm-induced mastocytosis. (C) 1999 Academic Press.
Resumo:
We have shown that myocardial dysfunction induced by food restriction is related to calcium handling. Although cardiac function is depressed in food-restricted animals, there is limited information about the molecular mechanisms that lead to this abnormality. The present study evaluated the effects of food restriction on calcium cycling, focusing on sarcoplasmic Ca2+-ATPase (SERCA2), phospholamban (PLB), and ryanodine channel (RYR2) mRNA expressions in rat myocardium. Male Wistar-Kyoto rats, 60 days old, were submitted to ad libitum feeding (control rats) or 50% diet restriction for 90 days. The levels of left ventricle SERCA2, PLB, and RYR2 were measured using semi-quantitative RT-PCR. Body and ventricular weights were reduced in 50% food-restricted animals. RYR2 mRNA was significantly decreased in the left ventricle of the food-restricted group (control = 5.92 +/- 0.48 vs food-restricted group = 4.84 +/- 0.33, P < 0.01). The levels of SERCA2 and PLB mRNA were similar between groups (control = 8.38 +/- 0.44 vs food-restricted group = 7.96 +/- 0.45, and control = 1.52 +/- 0.06 vs food-restricted group = 1.53 +/- 0.10, respectively). Down-regulation of RYR2 mRNA expressions suggests that chronic food restriction promotes abnormalities in sarcoplasmic reticulum Ca2+ release.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We speculated that the influence of lateral preoptic area (LPO) in sodium balance, involves arginine(8)-vasopressin (AVP) and angiotensin (ANG II) on Na+ uptake in LPO. Therefore, the present study investigated the effects of central administration of specific AVP and ANG 11 antagonists (d(CH2)(5)-Tyr (Me)-AVP (AAVP) and [Adamanteanacetyl(1), 0-ET-D-Tyr(2), Val(4), Aminobutyryl(6), Arg(8.9)]-AVP (ATAVP) antagonists of V-1 and V-2 receptors of AVP. Also the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively), was investigated on Na+ uptake and renal fluid and electrolyte excretion. After an acclimatization period of 7 days, the animals were maintained under tribromoethanol (200 mg/kg body weight, intraperitonial) anesthesia and placed in a Kopf stereotaxic instrument. Stainless guide cannula was implanted into the LPO. AAVP and ATAVP injected into the LPO prior to AVP produced a reduction in the NaCl intake. Both the AT(1) and AT(2) ligands administered into the LPO elicited a decrease in the NaCl intake induced by AVP injected into the LPO. AVP injection into the LPO increased sodium renal excretion, but this was reduced by prior AAVP administration. The ATAVP produced a decreased in the natriuretic effect of AVP. The losartan injected into LPO previous to AVP decreased the sodium excretion and the CGP 421122A also decreased the natriuretic effect of AVP. The AVP produced an antidiuresis effect that was inhibited by prior administration into LPO of the ATAVP. The AAVP produced no change in the antidiuretic effect of AVP. These results suggest that LPO are implicated in sodium balance that is mediated by V-1, V-2, AT(2) and AT(2) receptors. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The 5-hydroxytryptamine (5-HT)(1A) receptor system plays a prominent role in a variety of physiological functions and behavior and regulation of this responsiveness of the receptor system has been implicated in the central regulation of water intake and urinary excretion. The lateral septal area (LSA) exhibits a high density of 5-HT1A receptors, as well as a subpopulation of oxytocin (OT) receptors. Here we report the effects of pMPPF (a selective 5-HT1A antagonist), d(CH2)(5)[Tyr(Me)(2)Thr(4), Orn(5), Tyr(NH2)(9)]-vasotocin (an OT antagonist), and that 5-HT1A receptor system is regulated as a consequence of activation of the Na+ channel by veratridine. Cannulae were implanted into the LSA of rats to enable the introduction of the drugs. Injections of 8-OH-DPAT (a 5-HT1A agonist) blocked water intake and increased urinary excretion, while pMPPF or the OT antagonist injected bilaterally before 8-OH-DPAT blocked its inhibitory effect on water intake and its diuretic effect. In contrast, increases in extracellular sodium levels induced by the sodium channel modulator, veratridine, enhanced 5-HT1A responsiveness for water intake and reduced the diuretic effects induced by 8-OH-DPAT. These trials demonstrated that the responsiveness of the 5-HT1A receptor system in the LSA can be enhanced or depressed as a consequence of an induced rise in extracellular sodium. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)