972 resultados para Recombinant human growth hormone (rhGH)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term sensitization in Aplysia is a well studied model for the examination of the cellular and molecules mechanisms of long-term memory. Several lines of evidence suggest long-term sensitization is mediated at least partially by long-term synaptic facilitation between the sensory and motor neurons. The sensitization training and one of its analogues, serotonin (5-HT), can induce long-term facilitation. In this study, another analogue to long-term sensitization training has been developed. Stimulation of peripheral nerves of pleural-pedal ganglia preparation induced long-term facilitation at both 24 hr and 48 hr. This is the first report that long-term facilitation in Aplysia persists for more than 24 hr, which is consistent with the observation that long-term sensitization lasts for more than one day. Thus, the data support the hypothesis that long-term facilitation is an important mechanism for long-term sensitization.^ One of the major differences between short-term and long-term facilitation is that long-term facilitation requires protein synthesis. Therefore, the effects of anisomycin, a protein synthesis inhibitor, on long-term facilitation was examined. Long-term facilitation induced by nerve stimulation was inhibited by 2 $\mu$M anisomycin, which inhibits $\sim$90% of protein synthesis. Nevertheless, at higher concentration (20 $\mu$M), anisomycin induced long-term facilitation by itself, which raises an interesting question about the function of anisomycin other than protein synthesis inhibition.^ Since protein synthesis is critical for long-term facilitation, a major goal is to identify and functionally characterize the molecules whose mRNA levels are altered during the formation of long-term facilitation. Behavioral training or its analogues (nerve stimulation and 5-HT) increases the level of mRNA of calmodulin (CaM). Thus, the role of Ca$\sp{2+}$-CaM-dependent protein kinase II (CaMKII), a major substrate of CaM, in long-term facilitation induced by nerve stimulation was examined. KN-62, a specific CaMKII inhibitor, did not block either the induction or the maintenance of long-term facilitation induced by nerve stimulation. These data indicate that CaMKII may not be involved in long-term facilitation. Another protein whose mRNA level of a molecule was increased by the behavioral training and the treatment of 5-HT is Aplysia tolloid/BMP-1-like protein 1 (apTBL-1). Tolloid in Drosophila and BMP-1 in human tissues are believed to be secreted as a metalloprotease to activate TGF-$\beta.$ Thus, the long-term effects of recombinant human TGF-$\beta1$ on synaptic strength were examined. Treatment of ganglia with TGF-$\beta1$ produced long-term facilitation, but not short-term or intermediate-term facilitation ($\le$4 hr). In addition, TGF-$\beta1$ and 5-HT were not additive in producing long-term facilitation, which indicates an interaction between two cascades. Moreover, 5-HT-induced facilitation (at both 24 hr and 48 hr) and nerve stimulation-induced facilitation (at 24 hr) were inhibited by TGF-$\beta$ sRII, a TGF-$\beta$ inhibitor. These results suggest that TGF-$\beta$ is part of the cascade of events underlying long-term sensitization, and also indicate that a signaling molecule used in development may also have functions in adult neuronal plasticity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Several monogenic defects have been reported to be associated with idiopathic short stature. Focusing on growth hormone receptor (GHR)-gene alterations, the heterozygosity of the same gene defect may be associated with a range of growth deficits. We found a heterozygous mutation (V144I) within exon 6 of the GHR gene in a patient with a low level of insulin-like growth factor I (IGF-I), normal level of GH, and severe short stature. Despite the lack of statistical difference, an overall tendency for reduced wt-GH-induction of GHR activation and Jak/Stat signalling in cells transiently expressing GHR-V144I alone or co-expressing wt-GHR compared to cells expressing only wt-GHR was found when GH doses were increased. Our results suggest that, although GHR sequence variants are responsible for some functional alterations commonly observed in children with idiopathic short stature, these changes may not explain all the height deficits observed in these subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen storage disease type II is a rare multi-systemic disorder characterised by an intracellular accumulation of glycogen due a mutation in the acid alpha glucosidase (GAA) gene. The level of residual enzyme activity, the genotype and other yet unknown factors account for the broad variation of the clinical phenotype. The classical infantile form is characterised by severe muscle hypotonia and cardiomyopathy leading to early death. The late-onset form presents as a limb girdle myopathy with or without pulmonary dysfunction. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA) in infants is life saving. In contrast, therapeutic efficacy of rhGAA in the late-onset form is modest. High expenses of rhGAA, on-going infusions and poor pharmacokinetic efficacy raised a discussion of the cost effectiveness of ERT in late-onset Pompe disease in Switzerland. This discussion was triggered by a Swiss federal court ruling which confirmed the reluctance of a health care insurer not to reimburse treatment costs in a 67-year-old female suffering from Pompe disease. As a consequence of this judgement ERT was stopped by all insurance companies in late-onset Pompe patients in Switzerland regardless of their clinical condition. Subsequent negotiations lead to the release of a national guideline of the management of late-onset Pompe disease. Initiation and limitation of ERT is outlined in a national Pompe registry. Reimbursement criteria are defined and individual efficacy of ERT with rhGAA is continuously monitored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To test a non-glycosylated recombinant human bone morphogenetic protein-2 (ngly-rhBMP-2)/fibrin composite, which has been shown experimentally to enhance healing of bone defects in rodents, in a clinical case series of dogs and cats undergoing treatment for fracture non-unions and arthrodesis. METHODS A ngly-rhBMP-2/fibrin composite was applied in 41 sites in 38 dogs and cats for which a cancellous bone autograft was indicated, replacing the graft. RESULTS Bridging of the bone defect with functional bone healing was achieved in 90 per cent of the arthrodesis and fracture nonunions treated in this manner. CLINICAL SIGNIFICANCE This prospective clinical study demonstrates the beneficial effects of ngly-rhBMP-2 in a specially designed fibrin matrix on the treatment of bone defects, and validates the use of this composite as an alternative to bone autografts in dogs and cats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme replacement therapy (ERT) with recombinant human alglucosidase alfa (rhGAA) in late-onset Pompe disease is moderately effective. Little is known about the clinical course after treatment termination and the resumption of ERT. In Switzerland, rhGAA therapy for Pompe disease was temporarily withdrawn after the federal court judged that the treatment costs were greatly out of proportion compared to the benefits. Re-treatment was initiated after the therapy was finally licensed. We retrospectively analysed seven Pompe patients, who underwent cessation and resumption of ERT (median age 43 years). The delay from first symptoms to final diagnosis ranged from 4 to 20 years. The demographics, clinical characteristics, assessments with the 6-min walking test (6-MWT), the predicted forced vital capacity (FVC) and muscle strength were analysed. Before initiation of ERT, all patients suffered from proximal muscle weakness of the lower limbs; one was wheelchair-bound and two patients received night-time non-invasive ventilation. Initial treatment stabilised respiratory function in most patients and improved their walking performance. After treatment cessation, upright FVC declined in most and the 6-MWT declined in all patients. Two patients needed additional non-invasive ventilatory support. Twelve months after resuming ERT, the respiratory and walking capacity improved again in most patients. However, aside for one patient, none of the patients reached the same level of respiratory function or distance walked in 6 min, as at the time of ERT withdrawal. We conclude that cessation of ERT in Pompe disease causes a decline in clinical function and should be avoided. Resuming treatment only partially recovers respiratory function and walking capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Acute thrombotic microangiopathies (TMAs) are characterized by excessive microvascular thrombosis and are associated with markers of neutrophil extracellular traps (NETs) in plasma. NETs are composed of DNA fibers and promote thrombus formation through the activation of platelets and clotting factors. OBJECTIVE The efficient removal of NETs may be required to prevent excessive thrombosis such as in TMAs. To test this hypothesis, we investigated whether TMAs are associated with a defect in the degradation of NETs. APPROACH AND RESULTS We show that NETs generated in vitro were efficiently degraded by plasma from healthy donors. However, NETs remained stable after exposure to plasma from TMA patients. The inability to degrade NETs was linked to a reduced DNase activity in TMA plasma. Plasma DNase1 was required for efficient NET-degradation and TMA plasma showed decreased levels of this enzyme. Supplementation of TMA plasma with recombinant human DNase1 restored NET-degradation activity. CONCLUSIONS Our data indicates that DNase1-mediated degradation of NETs is impaired in patients with TMAs. The role of plasma DNases in thrombosis is, as of yet, poorly understood. Reduced plasma DNase1 activity may cause the persistence of pro-thrombotic NETs and thus promote microvascular thrombosis in TMA patients. This article is protected by copyright. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Preterm infants suffering from intraventricular hemorrhage (IVH) are at increased risk for neurodevelopmental impairment. Observational data suggest that recombinant human erythropoietin (rEPO) improves long-term cognitive outcome in infants with IVH. Recent studies revealed a beneficial effect of early high-dose rEPO on white matter development in preterm infants determined by magnetic resonance imaging (MRI). OBJECTIVES To summarize the current evidence and to delineate the study protocol of the EpoRepair trial (Erythropoietin for the Repair of Cerebral Injury in Very Preterm Infants). METHODS The study involves a review of the literature and the design of a double-blind, placebo-controlled, multicenter trial of repetitive high-dose rEPO administration, enrolling 120 very preterm infants with moderate-to-severe IVH diagnosed by cranial ultrasound in the first days of life, qualitative and quantitative MRI at term-equivalent age and long-term neurodevelopmental follow-up until 5 years of age. RESULTS AND CONCLUSIONS The hypothesis generated by observational data that rEPO may improve long-term cognitive outcomes of preterm infants suffering from IVH are to be confirmed or refuted by the randomized controlled trial, EpoRepair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS To investigate exercise-related fuel metabolism in intermittent high-intensity (IHE) and continuous moderate intensity (CONT) exercise in individuals with type 1 diabetes mellitus. METHODS In a prospective randomised open-label cross-over trial twelve male individuals with well-controlled type 1 diabetes underwent a 90 min iso-energetic cycling session at 50% maximal oxygen consumption ([Formula: see text]), with (IHE) or without (CONT) interspersed 10 s sprints every 10 min without insulin adaptation. Euglycaemia was maintained using oral (13)C-labelled glucose. (13)C Magnetic resonance spectroscopy (MRS) served to quantify hepatocellular and intramyocellular glycogen. Measurements of glucose kinetics (stable isotopes), hormones and metabolites complemented the investigation. RESULTS Glucose and insulin levels were comparable between interventions. Exogenous glucose requirements during the last 30 min of exercise were significantly lower in IHE (p = 0.02). Hepatic glucose output did not differ significantly between interventions, but glucose disposal was significantly lower in IHE (p < 0.05). There was no significant difference in glycogen consumption. Growth hormone, catecholamine and lactate levels were significantly higher in IHE (p < 0.05). CONCLUSIONS/INTERPRETATION IHE in individuals with type 1 diabetes without insulin adaptation reduced exogenous glucose requirements compared with CONT. The difference was not related to increased hepatic glucose output, nor to enhanced muscle glycogen utilisation, but to decreased glucose uptake. The lower glucose disposal in IHE implies a shift towards consumption of alternative substrates. These findings indicate a high flexibility of exercise-related fuel metabolism in type 1 diabetes, and point towards a novel and potentially beneficial role of IHE in these individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT02068638 FUNDING: Swiss National Science Foundation (grant number 320030_149321/) and R&A Scherbarth Foundation (Switzerland).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemophilia A is a clotting disorder caused by functional factor VIII (FVIII) deficiency. About 25% of patients treated with therapeutic recombinant FVIII develop antibodies (inhibitors) that render subsequent FVIII treatments ineffective. The immune mechanisms of inhibitor formation are not entirely understood, but circumstantial evidence indicates a role for increased inflammatory response, possibly via stimulation of Toll-like receptors (TLRs), at the time of FVIII immunization. I hypothesized that stimulation through TLR4 in conjunction with FVIII treatments would increase the formation of FVIII inhibitors. To test this hypothesis, FVIII K.O. mice were injected with recombinant human FVIII with or without concomitant doses of TLR4 agonist (lipopoysaccharide; LPS). The addition of LPS combined with FVIII significantly increased the rate and the production of anti-FVIII IgG antibodies and neutralizing FVIII inhibitors. In the spleen, repeated in vivo TLR4 stimulation with LPS increased the relative percentage of macrophages and dendritic cells (DCs) over the course of 4 injections. However, repeated in vivo FVIII stimulation significantly increased the density of TLR4 expressed on the surface of all spleen antigen presenting cells (APCs). Culture of splenocytes isolated from mice revealed that the combined stimulation of LPS and FVIII also synergistically increased early secretion of the inflammatory cytokines IL-6, TNF-α, and IL-10, which was not maintained throughout the course of the repeated injections. While cytokine secretion was relatively unchanged in response to FVIII re-stimulation in culture, LPS re-stimulation in culture induced increased and prolonged inflammatory cytokine secretion. Re-stimulation with both LPS and FVIII induced cytokine secretion similar to LPS stimulation alone. Interestingly, long term treatment of mice with LPS alone resulted in splenocytes that showed reduced response to FVIII in culture. Together these results indicated that creating a pro-inflammatory environment through the combined stimulation of chronic, low-dose LPS and FVIII changed not only the populations but also the repertoire of APCs in the spleen, triggering the increased production of FVIII inhibitors. These results suggested an anti-inflammatory regimen should be instituted for all hemophilia A patients to reduce or delay the formation of FVIII inhibitors during replacement therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arp2/3 complex, a stable assembly of two actin-related proteins (Arp2 and Arp3) with five other subunits, caps the pointed end of actin filaments and nucleates actin polymerization with low efficiency. WASp and Scar are two similar proteins that bind the p21 subunit of the Arp2/3 complex, but their effect on the nucleation activity of the complex was not known. We report that full-length, recombinant human Scar protein, as well as N-terminally truncated Scar proteins, enhance nucleation by the Arp2/3 complex. By themselves, these proteins either have no effect or inhibit actin polymerization. The actin monomer-binding W domain and the p21-binding A domain from the C terminus of Scar are both required to activate Arp2/3 complex. A proline-rich domain in the middle of Scar enhances the activity of the W and A domains. Preincubating Scar and Arp2/3 complex with actin filaments overcomes the initial lag in polymerization, suggesting that efficient nucleation by the Arp2/3 complex requires assembly on the side of a preexisting filament—a dendritic nucleation mechanism. The Arp2/3 complex with full-length Scar, Scar containing P, W, and A domains, or Scar containing W and A domains overcomes inhibition of nucleation by the actin monomer-binding protein profilin, giving active nucleation over a low background of spontaneous nucleation. These results show that Scar and, likely, related proteins, such as the Cdc42 targets WASp and N-WASp, are endogenous activators of actin polymerization by the Arp2/3 complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Killer cell inhibitory receptors (KIR) protect class I HLAs expressing target cells from natural killer (NK) cell-mediated lysis. To understand the molecular basis of this receptor-ligand recognition, we have crystallized the extracellular ligand-binding domains of KIR2DL2, a member of the Ig superfamily receptors that recognize HLA-Cw1, 3, 7, and 8 allotypes. The structure was determined in two different crystal forms, an orthorhombic P212121 and a trigonal P3221 space group, to resolutions of 3.0 and 2.9 Å, respectively. The overall fold of this structure, like KIR2DL1, exhibits K-type Ig topology with cis-proline residues in both domains that define β-strand switching, which sets KIR apart from the C2-type hematopoietic growth hormone receptor fold. The hinge angle of KIR2DL2 is approximately 80°, 14° larger than that observed in KIR2DL1 despite the existence of conserved hydrophobic residues near the hinge region. There is also a 5° difference in the observed hinge angles in two crystal forms of 2DL2, suggesting that the interdomain hinge angle is not fixed. The putative ligand-binding site is formed by residues from several variable loops with charge distribution apparently complementary to that of HLA-C. The packing of the receptors in the orthorhombic crystal form offers an intriguing model for receptor aggregation on the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of ≈200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are ≈20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5′-[γ-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5′-[γ-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erythropoietin (EPO) is required for red blood cell development, but whether EPO-specific signals directly instruct erythroid differentiation is unknown. We used a dominant system in which constitutively active variants of the EPO receptor were introduced into erythroid progenitors in mice. Chimeric receptors were constructed by replacing the cytoplasmic tail of constitutively active variants of the EPO receptor with tails of diverse cytokine receptors. Receptors linked to granulocyte or platelet production supported complete erythroid development in vitro and in vivo, as did the growth hormone receptor, a nonhematopoietic receptor. Therefore, EPOR-specific signals are not required for terminal differentiation of erythrocytes. Furthermore, we found that cellular context can influence cytokine receptor signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial-selective delivery of therapeutic agents, such as drugs or genes, would provide a useful tool for modifying vascular function in various disease states. A potential molecular target for such delivery is E-selectin, an endothelial-specific cell surface molecule expressed at sites of activation in vivo and inducible in cultured human umbilical vein endothelial cells (HUVEC) by treatment with cytokines such as recombinant human interleukin 1β (IL-1β). Liposomes of various types (classical, sterically stabilized, cationic, pH-sensitive), each conjugated with mAb H18/7, a murine monoclonal antibody that recognizes the extracellular domain of E-selectin, bound selectively and specifically to IL-1β-activated HUVEC at levels up to 275-fold higher than to unactivated HUVEC. E-selectin-targeted immunoliposomes appeared in acidic, perinuclear vesicles 2–4 hr after binding to the cell surface, consistent with internalization via the endosome/lysosome pathway. Activated HUVEC incubated with E-selectin-targeted immunoliposomes, loaded with the cytotoxic agent doxorubicin, exhibited significantly decreased cell survival, whereas unactivated HUVEC were unaffected by such treatment. These results demonstrate the feasibility of exploiting cell surface activation markers for the endothelial-selective delivery of biologically active agents via immunoliposomes. Application of this targeting approach in vivo may lead to novel therapeutic strategies in the treatment of cardiovascular disease.