980 resultados para Receptors, Adrenergic, beta-3
Resumo:
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D H-1 NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and mu O-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18 +/- 0.05 Angstrom for the backbone atoms and 1.39 +/- 0.33 Angstrom for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.
Resumo:
The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors. There are three genes that code for the PPAR isoforms: PPAR alpha, PPAR beta and PPAR gamma. In the present review, studies characterizing the various PPAR isoforms are discussed. Peroxisome proliferator-activated receptor alpha has been implicated in the lipid-lowering effects of the fibrate drugs. Peroxisome proliferator-activated receptor gamma has a clear role in adipocyte differentiation and is therapeutically targeted by the thiazolidinedione drugs for the treatment of type II diabetes. The physiological role of PPAR beta is less well understood but, as described in the present review, recent studies have implicated it with a role in colon cancer. In the present review, particular attention is focused on the role of PPAR in the regulation of expression of proteins associated with cell cycle control and tumorigenesis.
Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli
Resumo:
A quantitatively repeatable protocol was developed for poly(3-hydroxybutyrate) (PHB) production by Escherichia coli XL1-Blue (pSYL107). Two constant-glucose fed-batch fermentations of duration 25 h were carried out in a 5-L bioreactor, with the measured oxygen volumetric mass-transfer coefficient (k(L)a) held constant at 1.1 min(-1). All major consumption and production rates were quantified. The intracellular concentration profiles of acetyl-CoA (300 to 600 mug.g RCM-1) and 3-hydroxy-butyryl-CoA (20 to 40 mug.g RCM-1) were measured, which is the first time this has been performed for E. coli during PHB production. The kinetics of PHB production were examined and likely ranges were established for polyhydroxyalkanoate (PHA) enzyme activity and the concentration of pathway metabolites. These measured and estimated values are quite similar to the available literature estimates for the native PHB producer Ralstonia eutropha. Metabolic control analysis performed on the PHB metabolic pathway showed that the PHB flux was highly sensitive to acetyl-CoA/CoA ratio (response coefficient 0.8), total acetyl-CoA + CoA concentration (response coefficient 0.7), and pH (response coefficient -1.25). It was less sensitive (response coefficient 0.25) to NADPH/NADP ratio. NADP(H) concentration (NADPH + NADP) had a negligible effect. No single enzyme had a dominant flux control coefficient under the experimental conditions examined (0.6, 0.25, and 0.15 for 3-ketoacyl-CoA reductase, PHA synthase, and 3-ketothiolase, respectively). In conjunction with metabolic flux analysis, kinetic analysis was used to provide a metabolic explanation for the observed fermentation profile. In particular, the rapid onset of PHB production was shown to be caused by oxygen limitation, which initiated a cascade of secondary metabolic events, including cessation of TCA cycle flux and an increase in acetyl-CoA/CoA ratio. (C) 2001 John Wiley & Sons. Inc. Biotechnol Bioeng 74: 70-80, 2001.
Resumo:
Tarpon have high resting or routine hematocrits (Hct) (37.6+/-3.4%) and hemoglobin concentrations (120.6+/-7.3 g 1(-1)) that increased significantly following bouts of angling-induced exercise (51.9+/-3.7% and 142.8+/-13.5 g 1(-1), respectively). Strenuous exercise was accompanied by an approximately tenfold increase in blood lactate and a muscle metabolite profile indicative of a high energy demand teleost. Routine blood values were quickly restored only when this facultative air-breathing fish was given access to atmospheric air. In vitro studies of oxygen transport capacity, a function of carrying capacity and viscosity, revealed that the optimal Hct range corresponded to that observed in fish under routine behaviour. During strenuous exercise however, further increase in viscosity was largely offset by a pronounced reduction in the shear-dependence of blood which conformed closely to an ideal Newtonian fluid. The mechanism for this behaviour of the erythrocytes appears to involve the activation of surface adrenergic receptors because pre-treatment with propranolol abolished the response. High levels of activity in tarpon living in hypoxic habitats are therefore supported by an elevated Hct with adrenergically mediated viscosity reduction, and air-breathing behaviour that enables rapid metabolic recovery. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
To identify novel cytokine-related genes, we searched the set of 60,770 annotated RIKEN mouse cDNA clones (FANTOM2 clones), using keywords such as cytokine itself or cytokine names (such as interferon, interleukin, epidermal growth factor, fibroblast growth factor, and transforming growth factor). This search produced 108 known cytokines and cytokine-related products such as cytokine receptors, cytokine-associated genes, or their products (enhancers, accessory proteins, cytokine-induced genes). We found 15 clusters of FANTOM2 clones that are candidates for novel cytokine-related genes. These encoded products with strong sequence similarity to guanylate-binding protein (GBP-5), interleukin-1 receptor-associated kinase 2 (IRAK-2), interleukin 20 receptor alpha isoform 3, a member of the interferon-inducible proteins of the Ifi 200 cluster, four members of the membrane-associated family 1-8 of interferon-inducible proteins, one p27-like protein, and a hypothetical protein containing a Toll/Interleukin receptor domain. All four clones representing novel candidates of gene products from the family contain a novel highly conserved cross-species domain. Clones similar to growth factor-related products included transforming growth factor beta-inducible early growth response protein 2 (TIEG-2), TGFbeta-induced factor 2, integrin beta-like 1, latent TGF-binding protein 4S, and FGF receptor 4B. We performed a detailed sequence analysis of the candidate novel genes to elucidate their likely functional properties.
Resumo:
The Xenopus laevis oocyte expression system was used to determine the activities of alpha-conotoxins EpI and the ribbon isomer of AuIB, on defined nicotinic acetylcholine receptors (nAChRs). In contrast to previous findings on intracardiac ganglion neurones, alpha-EpI showed no significant activity on oocyte-expressed alpha3beta4 and alpha3beta2 nAChRs but blocked the alpha7 nAChR with an IC50 value of 30 nM. A similar IC50 value (103 nM) was obtained on the alpha7/5HT(3) chimeric receptor stably expressed in mammalian cells. Ribbon AuIB maintained its selectivity on oocyte-expressed alpha3beta4 receptors but unlike in native cells, where it was 10-fold more potent than native alpha-AuIB, had 25-fold lower activity. These results indicate that as yet unidentified factors influence alpha-conotoxin pharmacology at native versus oocyte-expressed nAChRs. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Activation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family of receptors promotes the survival, proliferation, and differentiation of cells of the myeloid compartment. Several signaling pathways are activated downstream of the receptor, however it is not clear how these induce specific biologic outcomes. We have previously identified 2 classes of constitutively active mutants of the shared signaling subunit, human (h) betac, of the human GM-CSF/interieukin-3 (IL-3)/IL-5 receptors that exhibit different modes of signaling. In a factor-dependent bipotential myeloid cell line, FDB1, an activated mutant containing a substitution in the transmembrane domain (V449E) induces factor-independent proliferation and survival, while mutants in the extracellular domain induce factor-independent granulocyte-macrophage differentiation. Here we have used further mutational analysis to demonstrate that there are nonredundant functions for several regions of the cytoplasmic domain with regard to mediating proliferation, viability, and differentiation, which have not been revealed by previous studies with the wild-type GM-CSF receptor. This unique lack of redundancy has revealed an association of a conserved membrane-proximal region with viability signaling and a critical but distinct role for tyrosine 577 in the activities of each class of mutant.
Resumo:
alpha-Conotoxins that target the neuronal nicotinic acetylcholine receptor have a range of potential therapeutic applications and are valuable probes for examining receptor subtype selectivity. The three-dimensional structures of about half of the known neuronal specific alpha-conotoxins have now been determined and have a consensus fold containing a helical region braced by two conserved disulfide bonds. These disulfide bonds define the two-loop framework characteristic for alpha-conotoxins, CCXmCXnC, where loop 1 comprises four residues (m = 4) and loop 2 between three and seven residues (n = 3, 6 or 7). Structural studies, particularly using NMR spectroscopy have provided an insight into the role and spatial location of residues implicated in receptor binding and biological activity.
Resumo:
Aspergillus versicolor grown on xylan or xylose produces two beta-xylosidases with differences in biochemical properties and degree of glycosylation. We investigated the alterations in the biochemical properties of these beta-xylosidases after deglycosylation with Endo-H or PNGase F. After deglycosylation, both enzymes migrated faster in PAGE or SDS-PAGE exhibiting the same R(f). Temperature optimum of xylan-induced and xylose-induced beta-xylosidases was 45A degrees C and 40A degrees C, respectively, and 35A degrees C after deglycosylation. The xylan-induced enzyme was more active at acidic pH. After deglycosylation, both enzymes had the same pH optimum of 6.0. Thermal resistance at 55A degrees C showed half-life of 15 min and 9 min for xylose- and xylan-induced enzymes, respectively. After deglycosylation, both enzymes exhibited half-lives of 7.5 min. Native enzymes exhibited different responses to ions, while deglycosylated enzymes exhibited identical responses. Limited proteolysis yielded similar polypeptide profiles for the deglycosylated enzymes, suggesting a common polypeptide core with differential glycosylation apparently responsible for their biochemical and biophysical differences.
Resumo:
A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.
Resumo:
One-pot hydrochalcogenation of 1-phenylthioacetylenes using organylselenolate and organyltellurolate anions generated by the insertions of selenium and tellurium in n-organyl lithium produced (Z)-1,2-bis(organylchalcogene)-1-alkenes. The chemical reactivity of these mixed 1,2-bis(organylchalcogene)-1-alkenes was studied by Te/Li and Se/Li stereoretentive exchanges carried out with n-butyl lithium, furnishing the new intermediate species (Z)-beta-organylthio vinyllithium anions, which were trapped with aldehydes, to give the (Z)-3-hydroxy vinyl thioethers with total control of the regio- and stereochemistry. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The solubilization of an europium (III) beta-diketonate chelate in aqueous medium and the changes in its photophysical properties upon its inclusion into an alpha-cyclodextrin hydrophobic cavity are described. The complex [Eu(tta)(3)center dot(H(2)O)(2)] (tta = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione) was synthesized, characterized, and incorporated into the hydrophobic cavity by stirring in an alpha-cyclodextrin aqueous solution. The inclusion was confirmed by (1)H NMR, and the stoichiometry of association was obtained by the Job method. The maximum in the excitation spectrum of the alpha-CD inclusion compound in aqueous solution was shifted 28 nm compared with the maximum of non alpha-CD complex. The emission spectrum of the association is similar to that of the free solid complex and displays the characteristic (5)D(0) -> (7)F(0-4) Eu(3+) transitions.
Resumo:
(1Z,3Z)-Butyltelluro-o-4-methoxy-1,3-butadiene 2 was obtained by the hydrotelluration of(Z)-1-methoxy-but-1-en-3-ynes 1. The butadienyllithium 3 obtained by the Te/Li exchange reaction in the (1Z,3Z)-1-butyltelluro-4-methoxy-1.3-butadiene 2 reacted with aldehydes to form the corresponding alcohols 4a-d with total retention of configuration. The alcohols formed undergo hydrolysis, resulting in the alpha,beta,gamma,delta-unsaturated aldehydes of (E,E) configuration, which are precursors of trienes obtained from natural sources. The products of this reaction were employed in the synthesis of methyl-(2E,4E)-decadienoate 7, which is a component of the flavor principles of ripe Bartlett pears. Performing the Wittig reaction of the methyl triphenylphosphorane with the deca-(2E,4E)-dienal 5a, we were able to synthesize the undeca-(1,3E,5E)-triene 6a. This compound is a sex-pheromone component of the marine brown algae Fucus serratus, Dictyopteris plagiograma, and Dictyopteris australis. Performing the Wittig reaction of methyl triphenylphosphorane with the octa-(2E,4E)-dienal 5c, the nona-(1,3E,5E)-triene 6b was synthesized. The compound obtained is a sex-pheromone component of the marine brown alga Sargassum horneri. The octa-( 1,3E,5E)-triene 6c was easily obtained from hepta-(2E,4E)-dienal 5d by the Wittig reaction with methyl triphenylphophorane. This compound is a sex-pheromone component of the marine brown alga Fucus serratus. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Aims: The beta-adrenergic and 5-HT(1A) receptor antagonist pindolol has been used in combination with antidepressant drugs, to shorten the time of onset of clinical efficacy and/or increase the proportion of responders in depressive and anxiety disorders. The aim of this study was to examine the interaction between pindolol and the selective serotonin reuptake inhibitor (SSRI), paroxetine in rats submitted to the elevated T-maze (ETM). Main methods: For assessing the drug combination effect, rats were administered with pindolol before paroxetine, using oral or intraperitoneal (i.p.) routes of acute administration, and were submitted to the ETM model. Key findings: The highest dose of pindolol used (15.0 mg/kg, i.p.) increased both inhibitory avoidance and escape latencies in the ETM, probably due to nonspecific motor deficit, since locomotion in a circular arena was also significantly decreased. The highest dose of paroxetine (3.0 mg/kg, i.p.) selectively impaired escape, considered a panicolytic effect. Combination of pindolol (5.0 mg/kg, i.p.) with an ineffective dose of paroxetine (1.5 mg/kg, i.p.) impaired escape, indicating a potentiation of the panicolytic effect of paroxetine. By the oral route, neither paroxetine (3.0 mg/kg) nor pindolol (5.0 mg/kg) alone were effective, but the combination treatment had a marked panicolytic effect, again indicating drug potentiation. Significance: The present results show that the combination of the ineffective doses of pindolol and paroxetine significantly increased escape latency, indicating a selective panicolytic effect. These findings give preclinical support for the use of this drug combination in the treatment of panic disorder (PD). (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.