844 resultados para Rat Prefrontal Cortex
Resumo:
A method for the rapid and simultaneous determination of 6,7-dimethylesculetin (CAS 120-08-1) and geniposide (CAS 24512-63-8) in rat plasma has been developed, using validated high performance liquid chromatography (HPLC) with solid phase extraction (SPE). The HPLC analysis was performed on a commercially available column (200 mm x 4.6 mm, 5 microm) with acetonitrile-methanol-0.1% aqueous formic acid as mobile phase and the UV detection at 343 nm and 238 nm for 6,7-dimethylesculetin and geniposide, respectively. The calibration curves for 6,7-dimethylesculetin and geniposide were linear over the range 0.4-25.6 microg/mL and 1.12-71.68 microg/mL, respectively. The lower limits of quantitation were 0.40 microg/ mL and 1.12 microg/mL, and the lower limits of detection were 0.06 microg/mL and 0.09 microg/ mL, respectively. The intra-day and inter-day precision for 6,7-dimethylesculetin and geniposide were < 5%, whereas the absolute recovery percentages were > 74%. A successful application of the developed HPLC analysis was demonstrated for the pharmacokinetic study of a Traditional Chinese Medicine formula of Yin Chen Hao Tang preparation.
Resumo:
A UPLC/Q-TOF-MS/MS method for analyzing the constituents in rat plasma after oral administration of Yin Chen Hao Tang (YCHT), a traditional Chinese medical formula, has been established. The UPLC/MS fingerprints of the samples were established first in vitro and in vivo, with 45 compounds in YCHT and 21 compounds in rat plasma after oral administration of YCHT were detected. Of the 45 detected compounds in vitro, 30 were identified, and all of the 21 compounds detected in rat plasma were identified either by comparing the retention time and mass spectrometry data with that of reference compounds or by mass spectrometry analysis and retrieving the reference literatures. Of the identified 21 compounds in rat plasma, 19 were the original form of compounds absorbed from the 45 detected compounds in vitro, 2 were the metabolites of the compounds existed in YCHT. It is concluded that a rapid and validated method has been developed based on UPLC-MS/MS, which shows high sensitivity and resolution that is more suitable for identifying the bioactive constituents in plasma after oral administration of Chinese herbal medicines, and provides helpful chemical information for further pharmacology and active mechanism research on the Chinese medical formula.
Resumo:
High performance liquid chromatography (HPLC) coupled with the solid phase extraction method was developed for determining cimifugin (a coumarin derivative; one of Saposhnikovia divaricatae's constituents) in rat plasma after oral administration of Saposhnikovia divaricatae extract (SDE), and the pharmacokinetics of cimifugin either in SDE or as a single compound was investigated. The HPLC analysis was performed on a commercially available column (4.6 mm x 200 mm, 5 pm) with the isocratic elution of solvent A (Methanol) and solvent B (Water) (A:B=60:40) and the detection wavelength was set at 250 nm. The calibration curve was linear over the range of 0.100-10.040 microg/mL. The limit of detection was 30 ng/mL. At the rat plasma concentrations of 0.402, 4.016, 10.040 microg/mL, the intra-day precision was 6.21%, 3.98%, and 2.23%; the inter-day precision was 7.59%, 4.26%, and 2.09%, respectively. The absolute recovery was 76.58%, 76.61%, and 77.67%, respectively. When the dosage of SDE was equal to the pure compound calculated by the amount of cimifugin, it was found to have two maximum peaks while the pure compound only showed one peak in the plasma concentration-time curve. The pharmacokinetic characteristics of SDE showed the superiority of the extract and the properties of traditional Chinese medicine.
Resumo:
In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.
Resumo:
Introduction: Apoptosis is the final destiny of many cells in the body, though this process has been observed in some pathological processes. One of these pathological processes is femoral head non-traumatic osteonecrosis. Among many pro/anti-apoptotic factors, nitric oxide has recently been an area of further interest. Osteocyte apoptosis and its relation to pro-apoptotic action invite further research, and the inducible form of nitric oxide synthase (iNOS)—which produces a high concentration of nitric oxide—has been flagged. The aim of this study was to investigate the effect of hyperbaric oxygen (HBO) and inducible NOS suppressor (Aminoguanidine) in prevention of femoral head osteonecrosis in an experimental model of osteonecrosis in spontaneous hypertensive rats (SHRs). Methods: After animal ethic approval 34 SHR rats were divided into four groups. Ten rats were allocated to the control group without any treatment, and eight rats were allocated to three treatment groups namely: HBO, Aminoguanidine (AMG), and the combination of HBO and AMG treatments (HBO+AMG). The HBO group received 250 kPa of oxygen via hyperbaric chamber for 30 days started at their 5th week of life; the AMG group received 1mg/ml of AMG in drinking water from the fifth week till the 17th week of life; and the last group received a combination of these treatments. Rats were sacrificed at the end of the 17th week of life and both femurs were analysed for evidence of osteonecrosis using Micro CT scan and H&E staining. Also, osteocyte apoptosis and the presence of two different forms of NOS (inducible (iNOS) and endothelial (eNOS)) were analysed by immunostaining and apoptosis staining (Hoechst and TUNEL). Results: Bone morphology of metaphyseal and epiphyseal area of all rats were investigated and analysed. Micro CT findings revealed significantly higher mean fractional trabecular bone volume (FBV) of metaphyseal area in untreated SHRs compared with all other treatments (HBO, P<0.05, HBO+AMG, P<0.005, and AMG P<0.001). Bone surface to volume ratio also significantly increased with HBO+AMG and AMG treatments when compared with the control group (18.7 Vs 20.8, P<0.05, and 18.7 Vs 21.1, P<0.05). Epiphyseal mean FBV did not change significantly among groups. In the metaphyseal area, trabecular thickness and numbers significantly decreased with AMG treatment, while trabecular separation significantly increased with both AMG and HBO+AMG treatment. Histological ratio of no ossification and osteonecrosis was 37.5%, 43.7%, 18.7% and 6.2% of control, HBO, HBO+AMG and AMG groups respectively with only significant difference observed between HBO and AMG treatment (P<0.01). High concentration of iNOS was observed in the region of osteonecrosis while there was no evidence of eNOS activity around that region. In comparison with the control group, the ratio of osteocyte apoptosis significantly reduced in AMG treatment (P<0.005). We also observed significantly fewer apoptotic osteocytes in AMG group comparing with HBO treatment (P<0.05). Conclusion: None of our treatments prevents osteonecrosis at the histological or micro CT scan level. High concentration of iNOS in the region of osteonecrosis and significant reduction of osteocyte apoptosis with AMG treatment were supportive of iNOS modulating osteocyte apoptosis in SHRs.
Resumo:
Resistance training results in skeletal muscle hypertrophy, but the molecular signalling mechanisms responsible for this altered phenotype are incompletely understood. We used a resistance training (RT) protocol consisting of three sessions [day 1 (d1), day 3 (d3), day 5 (d5)] separated by 48 h recovery (squat exercise, 4 sets × 10 repetitions, 3 min recovery) to determine early signalling responses to RT in rodent skeletal muscle. Six animals per group were killed 3 h after each resistance training session and 24 and 48 h after the last training session (d5). There was a robust increase in TNF? protein expression, and IKKSer180/181 and p38MAPK Thr180/Tyr182 phosphorylation on d1 (P < 0.05), which abated with subsequent RT, returning to control levels by d5 for TNF? and IKK Ser180/181. There was a trend for a decrease in MuRF-1 protein expression, 48 h following d5 of training (P = 0.08). Notably, muscle myofibrillar protein concentration was elevated compared to control 24 and 48 h following RT (P < 0.05). AktSer473 and mTORSer2448 phosphorylation were unchanged throughout RT. Phosphorylation of p70S6k Thr389 increased 3 h post-exercise on d1, d3 and d5 (P < 0.05), whilst phosphorylation of S6Ser235/236 increased on d1 and d3 (P < 0.05). Our results show a rapid attenuation of inflammatory signalling with repeated bouts of resistance exercise, concomitant with summation in translation initiation signalling in skeletal muscle. Indeed, the cumulative effect of these signalling events was associated with myofibrillar protein accretion, which likely contributes to the early adaptations in response to resistance training overload in the skeletal muscle.
Resumo:
Anxiety traits can be stable and permanent characteristics of an individual across time that is less susceptible of influences by a particular situation. One way to study trait anxiety in an experimental context is through the use of rat lines, selected according to contrasting phenotypes of fear and anxiety. It is not clear whether the behavioral differences between two contrasting rat lines in one given anxiety test are also present in others paradigms of state anxiety. Here, we examine the extent to which multiple anxiety traits generalize across selected animal lines originally selected for a single anxiety trait. We review the behavioral results available in the literature of eight rat genetic models of trait anxiety - namely Maudsley Reactive and Non-reactive rats, Floripa H and L rats, Tsukuba High and Low Emotional rats, High and Low Anxiety-related rats, High and Low Ultrasonic Vocalization rats, Roman High and Low Avoidance rats, Syracuse High and Low Avoidance rats, and Carioca High and Low Conditioned Freezing rats - across 11 behavioral paradigms of innate anxiety or aversive learning frequently used in the experimental setting. We observed both convergence and divergence of behavioral responses in these selected lines across the 11 paradigms. We find that predisposition for specific anxiety traits will usually be generalized to other anxiety provoking stimuli. However this generalization is not observed across all genetic models indicating some unique trait and state interactions. Genetic models of enhanced-anxiety related responses are beginning to help define how anxiety can manifest differently depending on the underlying traits and the current environmentally induced state.
Resumo:
In 1963, the National Institutes of Health (NIH) first issued guidelines for animal housing and husbandry. The most recent 2010 revision emphasizes animal care “in ways judged to be scientifically, technically, and humanely appropriate” (National Institutes of Health, 2010, p. XIII). The goal of these guidelines is to ensure humanitarian treatment of animals and to optimize the quality of research. Although these animal care guidelines cover a substantial amount of information regarding animal housing and husbandry, researchers generally do not report all these variables (see Table Table1).1). The importance of housing and husbandry conditions with respect to standardization across different research laboratories has been debated previously (Crabbe et al., 1999; Van Der Staay and Steckler, 2002; Wahlsten et al., 2003; Wolfer et al., 2004; Van Der Staay, 2006; Richter et al., 2010, 2011). This paper focuses on several animal husbandry and housing issues that are particularly relevant to stress responses in rats, including transportation, handling, cage changing, housing conditions, light levels and the light–dark cycle. We argue that these key animal housing and husbandry variables should be reported in greater detail in an effort to raise awareness about extraneous experimental variables, especially those that have the potential to interact with the stress response.
Resumo:
An HPLC with SPE method has been developed for analysis of constituents in rat blood after oral administration of the extract of Acanthopanax senticosus (ASE). The plasma sample was prepared by SPE method equipped with Oasis HLB cartridge (3cc, 60 mg). The analysis was performed on a Dikma Diamonsil RP(18) column (4.6 mmx150 mm, 5 microm) with the gradient elution of solvent A (ACN) and solvent B (0.1% aqueous phosphoric acid, v/v) and the detection wavelength was set at 270 nm. The calibration curve was linear over the range of 0.156-15.625 microg/mL. The LOD was 60 ng/mL. The intraday precision was less than 5.80%, and the interday precision was less than 6.0%. The recovery was (87.30 +/- 1.73)%. As a result, 19 constituents were detected in rat plasma after oral administration of the ASE, including 11 original compounds in ASE and eight metabolites, and three of the metabolites originated from syringin in ASE. Six constituents were identified by comparing with the corresponding reference compounds.
Resumo:
Isofraxidin is one of the main bioactive constituents in the root of Acanthopanax senticosus, which has antifatigue, antistress, and immuno-accommondating effects. In this study, an ultraperformance LC (UPLC)-ESI MS method was developed for analyzing isofraxidin and its metabolites in rat plasma. The analysis was performed on a UPLC coupled with ESI MS (quadropole MS tandem TOF MS). The lower LOD (LLOD) for isofraxidin was 0.25 ng/mL, the intraday precision was less than 10%, the interday precision was less than 10%, and the extraction recovery was more than 80%. Isofraxidin and two metabolites (M1 and M2) were detected in rat plasma after oral administration of isofraxidin, and the molecular polarities of M1 and M2 were both increased compared to isofraxidin. The metabolites were identified as 5,6-dihydroxyl-7-methoxycoumarin and 5-hydroxyl-6,7-dimethoxycoumarin when subjected to parent ion spectra, product ion spectra, and extract mass and element composition analyses.
Resumo:
Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated.
Resumo:
Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.
Resumo:
Fibroblast growth factor-2 (FGF2) is a powerful promoter of bone growth. We demonstrate here that brief exposure to FGF2 enhances mineralized nodule formation in cultured rat osteoprogenitor cells due to an expansion of cells that subsequently mineralize. This mitogenic effect is mediated via sulfated glycosaminoglycans (GAGs), FGFR1, and the extracellular signal-regulated kinase (ERK) pathway. The GAGs involved in this stimulation are chondroitin sulfates (CS) rather than heparan sulfates (HS). However, continuous FGF2 treatment reduces alkaline phosphatase (ALP) activity, downregulates collagen Ialpha1 (ColIalpha1) and FGFR3 expression, upregulates the expression and secretion of osteopontin (OPN) and inhibits mineralization. The inhibitory effects of FGF2 on FGFR3 expression and ALP activity are also mediated by the ERK pathway, although the effects of FGF2 on ColIalpha1 and OPN expression are mediated by GAGs and PKC activity. Thus short-term activation of FGF2/FGFR1 promotes osteoprogenitor proliferation and subsequent differentiation, while long-term activation of FGF2 signaling disrupts mineralization by modulating osteogenic marker expression. This study thus establishes the central role of sulfated GAGs in the osteogenic progression of osteoprogenitors.
Resumo:
The human lens nucleus is formed in utero, and from birth onwards, there appears to be no significant turnover of intracellular proteins or membrane components. Since, in adults, this region also lacks active enzymes, it offers the opportunity to examine the intrinsic stability of macromolecules under physiological conditions. Fifty seven human lenses, ranging in age from 12 to 82 years, were dissected into nucleus and cortex, and the nuclear lipids analyzed by electrospray ionization tandem mass spectrometry. In the first four decades of life, glycerophospholipids (with the exception of lysophosphatidylethanolamines) declined rapidly, such that by age 40, their content became negligible. In contrast the level of ceramides and dihydroceramides, which were undetectable prior to age 30, increased approximately 100-fold. The concentration of sphingomyelins and dihydrosphingomyelins remained unchanged over the whole life span. As a consequence of this marked alteration in composition, the properties of fiber cell membranes in the centre of young lenses are likely to be very different from those in older lenses. Interestingly, the identification of age 40 years as a time of transition in the lipid composition of the nucleus coincides with previously reported macroscopic changes in lens properties (e.g., a massive age-related increase in lens stiffness) and related pathologies such as presbyopia. The underlying reasons for the dramatic change in the lipid profile of the human lens with age are not known, but are most likely linked to the stability of some membrane lipids in a physiological environment.
Resumo:
Background Large segmental defects in bone do not heal well and present clinical challenges. This study investigated modulation of the mechanical environment as a means of improving bone healing in the presence of bone morphogenetic protein (BMP)-2. Although the influence of mechanical forces on the healing of fractures is well established, no previous studies, to our knowledge, have described their influence on the healing of large segmental defects. We hypothesized that bone-healing would be improved by initial, low-stiffness fixation of the defect, followed by high-stiffness fixation during the healing process. We call this reverse dynamization. Methods A rat model of a critical-sized femoral defect was used. External fixators were constructed to provide different degrees of stiffness and, importantly, the ability to change stiffness during the healing process in vivo. Healing of the critical-sized defects was initiated by the implantation of 11 mg of recombinant human BMP (rhBMP)-2 on a collagen sponge. Groups of rats receiving BMP-2 were allowed to heal with low, medium, and high-stiffness fixators, as well as under conditions of reverse dynamization, in which the stiffness was changed from low to high at two weeks. Healing was assessed at eight weeks with use of radiographs, histological analysis, microcomputed tomography, dual x-ray absorptiometry, and mechanical testing. Results Under constant stiffness, the low-stiffness fixator produced the best healing after eight weeks. However, reverse dynamization provided considerable improvement, resulting in a marked acceleration of the healing process by all of the criteria of this study. The histological data suggest that this was the result of intramembranous, rather than endochondral, ossification. Conclusions Reverse dynamization accelerated healing in the presence of BMP-2 in the rat femur and is worthy of further investigation as a means of improving the healing of large segmental bone defects. Clinical Relevance These data provide the basis of a novel, simple, and inexpensive way to improve the healing of critical-sized defects in long bones. Reverse dynamization may also be applicable to other circumstances in which bonehealing is problematic.