927 resultados para Ras1p signaling
Resumo:
The topology of signal transduction is particularly important for neurons. Neurotrophic factors such as nerve growth factor (NGF) interact with receptors at distal axons and a signal is transduced by retrograde transport to the cell body to ensure survival of the neuron. We have discovered an organelle that may account for the retrograde transport of the neurotrophin signal. This organelle is derived from endocytosis of the receptor tyrosine kinase for NGF, TrkA. In vitro reactions containing semi-intact PC12 cells and ATP were used to enhance recovery of a novel organelle: small vesicles containing internalized NGF bound to activated TrkA. These vesicles were distinct from clathrin coated vesicles, uncoated primary endocytic vesicles, and synaptic vesicles, and resembled transport vesicles in their sedimentation velocity. They contained 10% of the total bound NGF and almost one-third of the total tyrosine phosphorylated TrkA. These small vesicles are compelling candidates for the organelles through which the neurotrophin signal is conveyed down the axon.
Resumo:
Continuous growth and development in plants are accomplished by meristems, groups of undifferentiated cells that persist as stem cells and initiate organs. While the structures of the apical and floral meristems in dicotyledonous plants have been well described, little is known about the underlying molecular mechanisms controlling cell proliferation and differentiation in these structures. We have shown previously that the CLAVATA1 (CLV1) gene in Arabidopsis encodes a receptor kinase-like protein that controls the size of the apical and floral meristems. Here, we show that KAPP, a gene encoding a kinase-associated protein phosphatase, is expressed in apical and young floral meristems, along with CLV1. Overexpression of KAPP mimics the clv1 mutant phenotype. Furthermore, CLV1 has kinase activity: it phosphorylates both itself and KAPP. Finally, KAPP binds and dephosphorylates CLV1. We present a model where KAPP functions as a negative regulator of the CLAVATA1 signal transduction pathway.
Resumo:
Convincing evidence has accumulated to identify the Frizzled proteins as receptors for the Wnt growth factors. In parallel, a number of secreted frizzled-like proteins with a conserved N-terminal frizzled motif have been identified. One of these proteins, Frzb-1, binds Wnt-1 and Xwnt-8 proteins and antagonizes Xwnt-8 signaling in Xenopus embryos. Here we report that Frzb-1 blocks Wnt-1 induced cytosolic accumulation of β-catenin, a key component of the Wnt signaling pathway, in human embryonic kidney cells. Structure/function analysis reveals that complete removal of the frizzled domain of Frzb-1 abolishes the Wnt-1/Frzb-1 protein interaction and the inhibition of Wnt-1 mediated axis duplication in Xenopus embryos. In contrast, removal of the C-terminal portion of the molecule preserves both Frzb-Wnt binding and functional inhibition of Wnt signaling. Partial deletions of the Frzb-1 cysteine-rich domain maintain Wnt-1 interaction, but functional inhibition is lost. Taken together, these findings support the conclusion that the frizzled domain is necessary and sufficient for both activities. Interestingly, Frzb-1 does not block Wnt-5A signaling in a Xenopus functional assay, even though Wnt-5A coimmunoprecipitates with Frzb-1, suggesting that coimmunoprecipitation does not necessarily imply inhibition of Wnt function.
Resumo:
The bacterial aspartate receptor was reconstructed to eliminate the transmembrane domain, thus connecting the recognition domain directly to the effector domain. The resulting soluble receptor folded correctly and was no longer an integral membrane protein. Upon aspartate binding, this soluble receptor was stabilized to a similar extent as that of the native receptor. Of interest, this soluble receptor retained the ability to signal from the recognition to the effector domain. This result defines more clearly the role of the membrane and transmembrane domains in signal transduction and suggests that some ligand-induced motions in receptor proteins do not require the membrane or transmembrane domain for information transmission.
Resumo:
Leptin (OB), an adipocyte-secreted circulating hormone, and its receptor (OB-R) are key components of an endocrine loop that regulates mammalian body weight. In this report we have analyzed signal transduction activities of OB-R containing the fatty mutation [OB-R(fa)], a single amino acid substitution at position 269 (Gln → Pro) in the OB-R extracellular domain that results in the obese phenotype of the fatty rat. We find that this mutant receptor exhibits both ligand-independent transcriptional activation via interleukin 6 and hematopoietin receptor response elements and ligand-independent activation of signal transducer and activator of transcription (STAT) proteins 1 and 3. However, OB-R(fa) is unable to constitutively activate STAT5B and is highly impaired for ligand induced activation of STAT5B compared with OB-R(wt). Introduction of the fatty mutation into a OB-R/G-CSF-R chimera generates a receptor with constitutive character that is similar but distinct from that of OB-R(fa). Constitutive mutant OB-R(fa) receptor signaling is repressed by coexpression of OB-R(wt). The implications of an extracellular domain amino acid substitution generating a cytokine receptor with a partially constitutive phenotype are discussed both in terms of the mechanism of OB-R triggering and the biology of the fatty rat.
Resumo:
The avian erythroblastosis viral oncogene (v-erbB) encodes a receptor tyrosine kinase that possesses sarcomagenic and leukemogenic potential. We have expressed transforming and nontransforming mutants of v-erbB in fibroblasts to detect transformation-associated signal transduction events. Coimmunoprecipitation and affinity chromatography have been used to identify a transformation-associated, tyrosine phosphorylated, multiprotein complex. This complex consists of Src homologous collagen protein (Shc), growth factor receptor binding protein 2 (Grb2), son of sevenless (Sos), and a novel tyrosine phosphorylated form of the cytoskeletal regulatory protein caldesmon. Immunofluorescence localization studies further reveal that, in contrast to the distribution of caldesmon along actin stress fibers in normal fibroblasts, caldesmon colocalizes with Shc in plasma membrane blebs in transformed fibroblasts. This colocalization of caldesmon and Shc correlates with actin stress fiber disassembly and v-erbB-mediated transformation. The tyrosine phosphorylation of caldesmon, and its association with the Shc–Grb2–Sos signaling complex directly links tyrosine kinase oncogenic signaling events with cytoskeletal regulatory processes, and may define one mechanism regulating actin stress fiber disassembly in transformed cells.
Resumo:
The tetraspanin CD81 is ubiquitously expressed and associated with CD19 on B lymphocytes and with CD4 and CD8 on T lymphocytes. Analysis of mice with disrupted CD81 gene reveals normal T cells but a distinct abnormality in B cells consisting of decreased expression of CD19 and severe reduction in peritoneal B-1 cells. CD81-deficient B cells responded normally to surface IgM crosslinking, but had severely impaired calcium influx following CD19 engagement. CD81-deficient mice had increased serum IgM and IgA and an exaggerated antibody response to the type II T independent antigen TNP-Ficoll. These results suggest that CD81 is important for CD19 signaling and B cell function.
Resumo:
Neuregulins are a multi-isoform family of growth factors that activate members of the erbB family of receptor tyrosine kinases. The membrane-anchored isoforms contain the receptor-activating ligand in their extracellular domain, a single membrane-spanning region, and a long cytoplasmic tail. To evaluate the potential biological role of the intracellular domain of the membrane-anchored neuregulin isoforms, we used a domain-specific gene disruption approach to produce a mouse line in which only the region of the neuregulin gene encoding almost the entire intracellular domain was disrupted. Consistent with previous reports in which all neuregulin isoforms were disrupted, the resulting homozygous neuregulin mutants died at E10.5 of circulatory failure and displayed defects in neural and cardiac development. To further understand these in vivo observations, we evaluated a similarly truncated neuregulin construct after transient expression in COS-7 cells. This cytoplasmic tail-deleted mutant, unlike wild-type neuregulin isoforms, was resistant to proteolytic release of its extracellular-domain ligand, a process required for erbB receptor activation. Thus, proteolytic processing of the membrane-bound neuregulin isoforms involved in cranial ganglia and heart embryogenesis is likely developmentally regulated and is critically controlled by their intracellular domain. This observation indicates that erbB receptor activation by membrane-bound neuregulins most likely involves a unique temporally and spatially regulated “inside-out” signaling process that is critical for processing and release of the extracellular-domain ligand.
Resumo:
Exposure to cyclopamine, a steroid alkaloid that blocks Sonic hedgehog (Shh) signaling, promotes pancreatic expansion in embryonic chicks. Heterotopic development of pancreatic endocrine and exocrine structures occurs in regions adjacent to the pancreas including stomach and duodenum, and insulin-producing islets in the pancreas are enlarged. The homeodomain transcription factor PDX1, required for pancreas development, is expressed broadly in the posterior foregut but pancreas development normally initiates only in a restricted region of PDX1-expressing posterior foregut where endodermal Shh expression is repressed. The results suggests that cyclopamine expands the endodermal region where Shh signaling does not occur, resulting in pancreatic differentiation in a larger region of PDX1-expressing foregut endoderm. Cyclopamine reveals the capacity of a broad region of the posterior embryonic foregut to form pancreatic cells and provides a means for expanding embryonic pancreas development.
Resumo:
Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β-adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β-adrenergic signaling defects including down-regulation of myocardial β-adrenergic receptors (β-ARs), functional β-AR uncoupling, and an up-regulation of the β-AR kinase (βARK1). Adenoviral-mediated gene transfer of the human β2-AR or an inhibitor of βARK1 to these failing myocytes led to the restoration of β-AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of βARK1 activity in the heart.
Resumo:
Cytokine-inducible protein SSI-1 [signal transducers and activators of transcription (STAT)-induced STAT inhibitor 1, also referred to as SOCS-1 (suppressor of cytokine signaling 1) or JAB (Janus kinase-binding protein)] negatively regulates cytokine receptor signaling by inhibition of JAK kinases. The SSI family of proteins includes eight members that are structurally characterized by an SH2 domain and a C-terminal conserved region that we have called the SC-motif. In this study, we investigated the roles of these domains in the function of SSI-1. Results of reporter assays demonstrated that the pre-SH2 domain (24 aa in front of the SH2 domain) and the SH2 domain of SSI-1 were required for the suppression by SSI-1 of interleukin 6 signaling. Coexpression studies of COS7 cells revealed that these domains also were required for inhibition of three JAKs (JAK1, JAK2, and TYK2). Furthermore, deletion of the SH2 domain, but not the pre-SH2 domain, resulted in loss of association of SSI-1 with TYK2. Thus, SSI-1 associates with JAK family kinase via its SH2 domain, and the pre-SH2 domain is required for the function of SSI-1. Deletion of the SC-motif markedly reduced expression of SSI-1 protein in M1 cells, and this reduction was reversed by treatment with proteasome inhibitors, suggesting that this motif is required to protect the SSI-1 molecule from proteolytic degradation. Based on these findings, we concluded that three distinct domains of SSI-1 (the pre-SH2 domain, the SH2 domain, and the SC-motif) cooperate in the suppression of interleukin 6 signaling.
Resumo:
Mutant presenilins have been found to cause Alzheimer disease. Here, we describe the identification and characterization of HOP-1, a Caenorhabditis elegans presenilin that displays much more lower sequence identity with human presenilins than does the other C. elegans presenilin, SEL-12. Despite considerable divergence, HOP-1 appears to be a bona fide presenilin, because HOP-1 can rescue the egg-laying defect caused by mutations in sel-12 when hop-1 is expressed under the control of sel-12 regulatory sequences. HOP-1 also has the essential topological characteristics of the other presenilins. Reducing hop-1 activity in a sel-12 mutant background causes synthetic lethality and terminal phenotypes associated with reducing the function of the C. elegans lin-12 and glp-1 genes. These observations suggest that hop-1 is functionally redundant with sel-12 and underscore the intimate connection between presenilin activity and LIN-12/Notch activity inferred from genetic studies in C. elegans and mammals.
Resumo:
Regulators of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Gi but not by Gs class α-subunits. All RGS proteins share a conserved 120-amino acid sequence termed the RGS domain. We have demonstrated that the RGS domains of RGS4, RGS10, and GAIP retain GTPase accelerating activity with the Gi class substrates Giα1, Goα, and Gzα in vitro. No regulatory activity of the RGS domains was detected for Gsα. Short deletions within the RGS domain of RGS4 destroyed GTPase activating protein activity and Giα1 substrate binding. Comparable protein–protein interactions between Giα1–GDP–AlF4− and the RGS domain or full-length RGS4 were detected using surface plasmon resonance.
Resumo:
Connector enhancer of KSR (CNK) is a multidomain protein required for RAS signaling. Its C-terminal portion (CNKC-term) directly binds to RAF. Herein, we show that the N-terminal portion of CNK (CNKN-term) strongly cooperates with RAS, whereas CNKC-term efficiently blocks RAS- and RAF-dependent signaling when overexpressed in the Drosophila eye. Two effector loop mutants of RASV12, S35 and C40, which selectively activate the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase pathways, respectively, do not cooperate with CNK. However, a strong cooperation is observed between CNK and RASV12G37, an effector loop mutant known in mammals to activate specifically the RAL pathway. We have identified two domains in CNKN-term that are critical for cooperation with RAS. Our results suggest that CNK functions in more than one pathway downstream of RAS. CNKc-term seems to regulate RAF, a component of the MAPK pathway, whereas CNKN-term seems to be involved in a MAPK-independent pathway.
Resumo:
The Arabidopsis PAD4 gene previously was found to be required for expression of multiple defense responses including camalexin synthesis and PR-1 gene expression in response to infection by the bacterial pathogen Pseudomonas syringae pv. maculicola. This report describes the isolation of PAD4. The predicted PAD4 protein sequence displays similarity to triacyl glycerol lipases and other esterases. The PAD4 transcript was found to accumulate after P. syringae infection or treatment with salicylic acid (SA). PAD4 transcript levels were very low in infected pad4 mutants. Treatment with SA induced expression of PAD4 mRNA in pad4–1, pad4–3, and pad4–4 plants but not in pad4–2 plants. Induction of PAD4 expression by P. syringae was independent of the regulatory factor NPR1 but induction by SA was NPR1-dependent. Taken together with the previous observation that pad4 mutants have a defect in accumulation of SA upon pathogen infection, these results suggest that PAD4 participates in a positive regulatory loop that increases SA levels, thereby activating SA-dependent defense responses.