898 resultados para Radioisotopes in biology
Resumo:
Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells.
Resumo:
Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future.
Resumo:
The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L.^ Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (n$\sb1$ = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (n$\sb2$ = 19) (at the beginning and end of the term).^ Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group on TOSRA scale two and biology knowledge. ANCOVAs did not indicate any significant differences on the post mean scores of the TOSRA or biology knowledge adjusted by differences in the pretest mean scores. Analysis of the research data did not show any significant correlation between attitudes toward science and biology knowledge. ^
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.
Resumo:
Inflammatory breast cancer (IBC) is an extremely rare but highly aggressive form of breast cancer characterized by the rapid development of therapeutic resistance leading to particularly poor survival. Our previous work focused on the elucidation of factors that mediate therapeutic resistance in IBC and identified increased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein (XIAP), to correlate with the development of resistance to chemotherapeutics. Although XIAP is classically thought of as an inhibitor of caspase activation, multiple studies have revealed that XIAP can also function as a signaling intermediate in numerous pathways. Based on preliminary evidence revealing high expression of XIAP in pre-treatment IBC cells rather than only subsequent to the development of resistance, we hypothesized that XIAP could play an important signaling role in IBC pathobiology outside of its heavily published apoptotic inhibition function. Further, based on our discovery of inhibition of chemotherapeutic efficacy, we postulated that XIAP overexpression might also play a role in resistance to other forms of therapy, such as immunotherapy. Finally, we posited that targeting of specific redox adaptive mechanisms, which are observed to be a significant barrier to successful treatment of IBC, could overcome therapeutic resistance and enhance the efficacy of chemo-, radio-, and immuno- therapies. To address these hypotheses our objectives were: 1. to determine a role for XIAP in IBC pathobiology and to elucidate the upstream regulators and downstream effectors of XIAP; 2. to evaluate and describe a role for XIAP in the inhibition of immunotherapy; and 3. to develop and characterize novel redox modulatory strategies that target identified mechanisms to prevent or reverse therapeutic resistance.
Using various genomic and proteomic approaches, combined with analysis of cellular viability, proliferation, and growth parameters both in vitro and in vivo, we demonstrate that XIAP plays a central role in both IBC pathobiology in a manner mostly independent of its role as a caspase-binding protein. Modulation of XIAP expression in cells derived from patients prior to any therapeutic intervention significantly altered key aspects IBC biology including, but not limited to: IBC-specific gene signatures; the tumorigenic capacity of tumor cells; and the metastatic phenotype of IBC, all of which are revealed to functionally hinge on XIAP-mediated NFκB activation, a robust molecular determinant of IBC. Identification of the mechanism of XIAP-mediated NFκB activation led to the characterization of novel peptide-based antagonist which was further used to identify that increased NFκB activation was responsible for redox adaptation previously observed in therapy-resistant IBC cells. Lastly, we describe the targeting of this XIAP-NFκB-ROS axis using a novel redox modulatory strategy both in vitro and in vivo. Together, the data presented here characterize a novel and crucial role for XIAP both in therapeutic resistance and the pathobiology of IBC; these results confirm our previous work in acquired therapeutic resistance and establish the feasibility of targeting XIAP-NFκB and the redox adaptive phenotype of IBC as a means to enhance survival of patients.
Resumo:
Maintenance of vascular homeostasis is an active process that is dependent on continuous signaling by the quiescent endothelial cells (ECs) that line mature vessels. Defects in vascular homeostasis contribute to numerous disorders of significant clinical impact including hypertension and atherosclerosis. The signaling pathways that are active in quiescent ECs are distinct from those that regulate angiogenesis but are comparatively poorly understood. Here we demonstrate that the previously uncharacterized scaffolding protein Caskin2 is a novel regulator of EC quiescence and that loss of Caskin2 in mice results in elevated blood pressure at baseline. Caskin2 is highly expressed in ECs from various vascular beds both in vitro and in vivo. When adenovirally expressed in vitro, Caskin2 inhibits EC proliferation and migration but promotes survival during hypoxia and nutrient deprivation. Likewise, loss of Caskin2 in vivo promotes increased vascular branching and permeability in mouse and zebrafish models. Caskin2 knockout mice are born in normal Mendelian ratios and appear grossly normal during early adulthood. However, they have consistently elevated systolic and diastolic blood pressure at baseline and significant context-dependent abnormalities in systemic metabolism (e.g., body weight, fat deposition, and glucose homeostasis). Although the precise molecular mechanisms of these effects remain unclear, we have shown that Caskin2 interacts with several proteins known to have important roles in endothelial biology and cardiovascular disease including the serine/threonine phosphatase PP1, the endothelial receptor Tie1, and eNOS, which is a critical regulator of vascular homeostasis. Ongoing work seeks to further characterize the functions of Caskin2 and its mechanisms of action with a focus on how Caskin2-mediated regulation of endothelial phenotype relates to its systemic effects on cardiovascular and metabolic function.
Resumo:
The Insulin-like Growth Factor 1 Receptor (IGF-1R) has an essential function in normal cell growth and in cancer progression. However, anti-IGF-1R therapies have mostly been withdrawn from clinical trials owing to a lack of efficacy and predictive biomarkers. IGF-1R activity and signalling in cancer cells is regulated by its C-terminal tail, and in particular, by a motif that encompasses tyrosines 1250 and 1251 flanked by serines 1248 and 1252 (1248- SFYYS-1252). Mutation of Y1250/1251 greatly reduces IGF-1-promoted cell migration, interaction with the scaffolding protein RACK1 in the context Integrin signalling, and IGF- 1R kinase activity. Here we investigated the phosphorylation of the SFYYS motif and characterise the conditions under which this motif may be phosphorylated under. As phosphorylated residues, the SFYYS motif may also serve to recruit interacting proteins to the IGF-1R. To this end we identified a novel IGF-1R interacting partner which requires phosphorylated residues in the SFYYS motif to interact with the IGF-1R. This interaction was found to be IGF-1-dependent, and required the scaffold protein RACK1. The interaction of this binding protein with the IGF-1R likely functions to promote maximal phosphorylation of Shc and ERK in IGF-1-stimulated cell migration, and may be important for IGF-1 signalling in cancer cells. Lastly, we have investigated possible kinases that may confer resistance or sensitivity to the IGF-1R kinase inhibitor BMS-754807. In this screen we identified ATR as a mediator of resistance and showed that suppression or chemical inhibition of ATR synergised with BMS-754807 to reduce colony formation. This work has contributes to our understanding of IGF-1R kinase regulation and signalling and suggests that administration of anti-IGF-1R drugs with ATR inhibitors may have therapeutic benefit.
Resumo:
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs.
Resumo:
Hemizygous deletion of 17p (del(17p)) has been identified as a variable associated with poor prognosis in myeloma, although its impact in the context of thalidomide therapy is not well described. The clinical outcome of 85 myeloma patients with del(17p) treated in a clinical trial incorporating both conventional and thalidomide-based induction therapies was examined. The clinical impact of deletion, low expression, and mutation of TP53 was also determined. Patients with del(17p) did not have inferior response rates compared to patients without del(17p), but, despite this, del(17p) was associated with impaired overall survival (OS) (median OS 26.6 vs. 48.5 months, P <0.001). Within the del(17p) group, thalidomide induction therapy was associated with improved response rates compared to conventional therapy, but there was no impact on OS. Thalidomide maintenance was associated with impaired OS, although our analysis suggests that this effect may have been due to confounding variables. A minimally deleted region on 17p13.1 involving 17 genes was identified, of which only TP53 and SAT2 were underexpressed. TP53 was mutated in <1% in patients without del(17p) and in 27% of patients with del(17p). The higher TP53 mutation rate in samples with del(17p) suggests a role for TP53 in these clinical outcomes. In conclusion, del(17p) defined a patient group associated with short survival in myeloma, and although thalidomide induction therapy was associated with improved response rates, it did not impact OS, suggesting that alternative therapeutic strategies are required for this group. (C) 2011 Wiley-Liss, Inc.
Resumo:
Immunoglobulin production by myeloma plasma cells depends on the unfolded protein response for protein production and folding. Recent studies have highlighted the importance of IRE1alpha and X box binding protein 1 (XBP1), key members of this pathway, in normal B-plasma cell development. We have determined the gene expression levels of IRE1alpha, XBP1, XBP1UNSPLICED (XBP1u), and XBP1SPLICED (XBP1s) in a series of patients with myeloma and correlated findings with clinical outcome. We show that IRE1alpha and XBP1 are highly expressed and that patients with low XBP1s/u ratios have a significantly better overall survival. XBP1s is an independent prognostic marker and can be used with beta2 microglobulin and t(4;14) to identify a group of patients with a poor outcome. Furthermore, we show the beneficial therapeutic effects of thalidomide in patients with low XBP1s/u ratios. This study highlights the importance of XBP1 in myeloma and its significance as an independent prognostic marker and as a predictor of thalidomide response.
Resumo:
Portugal has been the world leader in the cork sectr in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi raising concerns as occupational hazards in cork industry. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city. The chosen fungal species are the ones most frequently associated with respiratory problems in workers from these industries.
Age, growth, tagging of tilapia spp. and reproductive biology of siluroid catfishes in Lake Victoria
Resumo:
This report encompasses the time period 1 September 1973 through 31 July 1975. The research Officer's tour of duty officially terminated 30 September 1975, consisting of a regular 2-year tour of duty with three month extension of contract. During this time research into age and growth of several tropical species of fishes was conducted. In addition a closely related tagging program was initiated in order to determine both growth and movements of fishes. Lastly, some effort was directed towards aspects of the basic biology of several of the siluroid catfishes. This report delineates the relative effort into and success of the various research projects; presents results of research not previously offered, summarizes findings, and makes recommendations for future research endeavour. Two annual reports along with quarterly reports up to 30 June 1975 have been produced and are on file both at Headquarters in Jinja and the Kisumu Sub-station. These only will be referred to in some instances and built upon in others. Opinions offered, conclusions drawn and recommendation given within this report are solely those of the research officer employed in an official capacity for E.A.F.F.R.O.
Resumo:
All biological aspects of the stock are of scientific interest. Specific biological parameters are used either in estimating; yield, or providing a basis for suggesting fisheries management strategies, growth, mortality and stock size are the main determinants of yield, and aspects such as the timing of spawning and recruitment are important in considering management measures. In fisheries science, fish biology contributes in two broad areas; a) Basic biology and distribution of resource spp b) Population dynamics of the species An exploited fish stock is viewed as a simple biological system consisting of stock-biomass which is increased by growth and recruitment, and is reduced by natural-mortality and fishing mortality.
Resumo:
Composts can provide a source of organic carbon and nutrients for soil biota and increase soil fertility as well as provide other biological and structural benefits hence compost addition to cotton soils is seen as a way to improve cotton soil biological health and fertility. In a six month incubation experiment we analysed the changes in microbial populations and activities related to C and N cycling following the application of feedlot, poultry manure and gin trash compost materials. A significant variation in the chemical composition, e.g. major nutrients and trace elements, was found between the three compost products. The feedlot compost generally contained higher levels of dissolved organic carbon, total nitrogen and bicarbonate extractable phosphorus whereas the Gin trash compost had lower carbon and nutrient concentrations. The effect of compost addition @ 5 and 10t/ha generally increased microbial activity but the effect was only evident during the first two weeks of incubation. Composts effects on the abundance of total bacteria (16S), nitrifying (amoA), nitrogen fixing (nifH) and denitrifying bacteria (nosZ) and total fungi (ITS gene) varied between different composts. The addition of feedlot and poultry compost material significantly increased the levels of dissolved organic carbon (DOC) and nitrogen (DON) in soil compared to that in control soils while ‘Gin trash’ compost had no effect. These differences reflected in the microbial catabolic diversity changes in the compost amended soils. Therefore, chemical analysis of the compost material before application is recommended to more fully consider its’ potential benefits.
Resumo:
Environmental changes are some of the factors that affect fisheries and biological characteristics of fishes. The African catfish Clarias gariepinus (Burchell, 1822) has biological characteristics that enable it to persist under various stressful environmental conditions. However, few studies have examined how the African catfish responds to conditions created by a changing climate. The study examined some of the fishery and biological characteristics of African catfish in Lake Wamala (Uganda) to provide an understanding of their response to changing climatic conditions using data for the period 1950 - 2013. Temperature around the lake increased by 0.02ºC/year since 1980, commensurate with the regional trend, while rainfall was above average since 1996, except in 2004 and 2008. Lake depth was strongly positively correlated with rainfall (r =0.83, n= 6, p<0.05) up to 2000, after which, lake depth decreased amidst increase in rainfall. The contribution of African catfish increased from 20% to 85% and 17% to 78% respectively to commercial and experimental catches respectively between 1975 and 2013 despite the decrease in lake depth. The modal total length, condition factor, food, and fecundity did not change. Only size at first maturity decreased from 37.5 to 30 cm TL in females and 39.5 to 34.2 cm TL in males between 1999/2000 and 2012/2013. The biological characteristics of the African catfish were comparable with those of the same species in other lakes and remained relatively stable. The results suggested that the African catfish has the capacity to persist and/or adjust appropriately under conditions created by climate variability and change, and if properly managed, can sustain the fisheries of Lake Wamala.