965 resultados para RNA, Ribosomal -- genetics
Resumo:
植物激素乙烯作为一种信使分子调节控制果实完熟。ACC合成酶是植物体内乙烯生物合成途径的限速酶,其反义RNA的表达将能有效地抑制乙烯的生物合成而延缓果实完熟,利用反转录PCR技术克隆获得了ACC合成酶多基因家族成员之一LE-ACC2阅读框架约1.7kb的cDNA,经酶切图谱和序列分析鉴定无误后,反向连入植物表达载体pBin437中构建成组成型表达ACC合成酶反义RNA的双元载体。经农杆菌途径转化番茄“丽春”品种,获得了60株抗卡那再生杭株,PCR检测证明有6株为转基因植株,Southern杂交和Northern杂交分析进一步确证了外源基因的插入及其转录活性。反义番茄果实的乙烯释放受到明显抑制,表现出更好的耐储保鲜特性,并且与对照相比,在果实品质上没有明显差别。大田培育Fl和F2代转化番茄植株,反义番茄纯合品系的筛选工作正在进行之中。 同时,本研究利用已经获得的ACC合成酶和PG的cDNA克隆,构建了两个嵌合转化基因载体pPGACC1、pPGACC10,它包括1300bp的ACC合成酶cDNA编码序列,并分别含有反向与正向的250bp的5’端PG基因片断。酶切图谱和序列分析鉴定无误后,以pBin437为植物表达载体构建了双元载体pBPGACC1和pBPGACC10,分别表达PG正义RNA和反义RNA,并均表达ACC合成酶反义RNA。经农杆菌转化番茄子叶,植株的再生培育有待进行。通过对转基因植物的分析,我们期望阐明用单一嵌合基因表达载体通过反义抑制与抑制作用实现对内源两同源基因——PG和ACC合成酶下降调节的可能性,并可望得到具有更好耐储效果且品质优良的番茄品系。
Resumo:
本发明公开了金丝桃素的新用途。本发明发明人的实验证实,金丝桃素对RNA病毒,特别是禽流感病毒,口蹄疫病毒和犬瘟热病毒具有较好的抑制和灭活效果,可以该化合物为活性成分,制备成抗RNA病毒药物。该抗病毒药物可用于临床防治和治疗禽流感、犬瘟热、口蹄疫等由RNA病毒引发的疾病,对禽业、犬业及畜牧养殖业等意义重大。此外,我国草药资源丰富,该药物具有工业化生产的可行性。综上所述,金丝桃素将在医学和生物制药领域,尤其是抗RNA病毒药物的制备领域具有较大的实际意义和广阔的应用前景。
Resumo:
从广西产眼镜王蛇( Ophiophagus hannah) 毒腺中抽提总RNA , 经mRNA 纯化后构建眼镜王蛇毒腺 cDNA 文库。从所构建的cDNA 文库中, 随机筛选200 个克隆测序, 得到两个在进化上高度保守的基因: 泛素融 合蛋白基因(GenBank 登录号为AF297036) 和核糖体蛋白L30 基因(GenBank 登录号是AF297033) 。前者cDNA 的开放阅读框为387 bp , 后者为348 bp 。前者编码128 个氨基酸残基组成的泛素融合蛋白前体; 后者编码115 个氨基酸残基组成的核糖体蛋白L30 前体。由cDNA 序列推导出的氨基酸序列分析表明, 泛素融合蛋白前体包 括N - 末端的泛素结构域(76 个氨基酸残基) 和C - 末端的核糖体蛋白L40 结构域(52 个氨基酸残基) 。该蛋 白为一高碱性蛋白, C 末端含有一个“锌指”模式结构。与16 个物种比较的结果表明, 眼镜王蛇与脊椎动物的 泛素融合蛋白氨基酸序列相似度较高, 具有高度的保守性。
Resumo:
Samples of Tor tor were collected from Bari Reservoir of Udaipur and Narmada River at Hoshangabad (India), in the months of July and November 2005, respectively. Twenty-five samples were collected from each location. Bari Reservoir samples ranged from 17.0 to 24.5 cm in total length and from 75 to 155 g in weight, while Narmada samples ranged from 20.0 to 42.0 cm in length and 90 to 425 g in weight. The nucleic acid content in body muscle of Tor tor and the RNA/DNA ratio were estimated. The age of fishes was estimated by the scale study method and specimens were classified into four age groups. RNA/DNA ratio showed significant linear increase with increase in weight and age till the age of three years after which, the growth rate reduced. The 1-2 year group was the only one common between the two water bodies and a comparison of RNA/DNA ratios showed higher growth rate in Bari Reservoir. The gross primary productivity was also higher in Bari Reservoir being 551 mg cmˉ³ dˉ¹ compared to 404 mg cmˉ³ dˉ¹ observed for Narmada River. The condition factor (K) was found to be higher (1.21) in the fish from the Bari Reservoir compared to those of Narmada River (1.14). The growth rate was higher in females compared to males in >100 g specimens.
Resumo:
Partial sequences of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes were used for species identification and estimating phylogenetic relationship among three commercially important Ompok species viz. O. Pabda, O. pabo and O. bimaculatus. The sequence analysis of Cyt b (1118bp) and 16S rRNA (569 & 570bp) genes revealed that O. pabda, O. pabo & 0. bimaculatus were genetically distinct species and they exhibited identical phylogenetic relationship. The present study discussed usefulness of mtDNA genes (Cyt b & 16S rRNA) in resolving taxonomic ambiguity and estimating phylogenetics relationship.
Resumo:
Plants control their flowering time in order to ensure that they reproduce under favourable conditions. The components involved in this complex process have been identified using a molecular genetic approach in Arabidopsis and classified into genetically separable pathways. The autonomous pathway controls the level of mRNA encoding a floral repressor, FLC, and comprises three RNA-binding proteins, FCA, FPA and FLK. FCA interacts with the 3'-end RNA-processing factor FY to autoregulate its own expression post-transcriptionally and to control FLC. Other components of the autonomous pathway, FVE and FLD, regulate FLC epigenetically. This combination of epigenetic and post-transcriptional control gives precision to the control of FLC expression and flowering time.
Resumo:
Small RNAs have several important biological functions. MicroRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) regulate mRNA stability and translation, and siRNAs cause post-transcriptional gene silencing of transposons, viruses and transgenes and are important in both the establishment and maintenance of cytosine DNA methylation. Here, we study the role of the four Arabidopsis thaliana DICER-LIKE genes (DCL1-DCL4) in these processes. Sequencing of small RNAs from a dcl2 dcl3 dcl4 triple mutant showed markedly reduced tasiRNA and siRNA production and indicated that DCL1, in addition to its role as the major enzyme for processing miRNAs, has a previously unknown role in the production of small RNAs from endogenous inverted repeats. DCL2, DCL3 and DCL4 showed functional redundancy in siRNA and tasiRNA production and in the establishment and maintenance of DNA methylation. Our studies also suggest that asymmetric DNA methylation can be maintained by pathways that do not require siRNAs.
Resumo:
The Arabidopsis genome contains a highly complex and abundant population of small RNAs, and many of the endogenous siRNAs are dependent on RNA-Dependent RNA Polymerase 2 (RDR2) for their biogenesis. By analyzing an rdr2 loss-of-function mutant using two different parallel sequencing technologies, MPSS and 454, we characterized the complement of miRNAs expressed in Arabidopsis inflorescence to considerable depth. Nearly all known miRNAs were enriched in this mutant and we identified 13 new miRNAs, all of which were relatively low abundance and constitute new families. Trans-acting siRNAs (ta-siRNAs) were even more highly enriched. Computational and gel blot analyses suggested that the minimal number of miRNAs in Arabidopsis is approximately 155. The size profile of small RNAs in rdr2 reflected enrichment of 21-nt miRNAs and other classes of siRNAs like ta-siRNAs, and a significant reduction in 24-nt heterochromatic siRNAs. Other classes of small RNAs were found to be RDR2-independent, particularly those derived from long inverted repeats and a subset of tandem repeats. The small RNA populations in other Arabidopsis small RNA biogenesis mutants were also examined; a dcl2/3/4 triple mutant showed a similar pattern to rdr2, whereas dcl1-7 and rdr6 showed reductions in miRNAs and ta-siRNAs consistent with their activities in the biogenesis of these types of small RNAs. Deep sequencing of mutants provides a genetic approach for the dissection and characterization of diverse small RNA populations and the identification of low abundance miRNAs.
Resumo:
In addition to the three RNA polymerases (RNAP I-III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by DICER (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different ARGONAUTE (AGO) proteins for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of genomic siRNA production is RNAP IV-dependent, and to what extent these siRNAs are preferentially processed by certain DCL(s) or associated with specific AGOs for distinct downstream functions. To address these questions on a genome-wide scale, we sequenced approximately 335,000 siRNAs from wild-type and RNAP IV mutant Arabidopsis plants by using 454 technology. The results show that RNAP IV is required for the production of >90% of all siRNAs, which are faithfully produced from a discrete set of genomic loci. Comparisons of these siRNAs with those accumulated in rdr2 and dcl2 dcl3 dcl4 and those associated with AGO1 and AGO4 provide important information regarding the processing, channeling, and functions of plant siRNAs. We also describe a class of RNAP IV-independent siRNAs produced from endogenous single-stranded hairpin RNA precursors.
Resumo:
DNA methylation directed by 24-nucleotide small RNAs involves the small RNA-binding protein ARGONAUTE4 (AGO4), and it was previously shown that AGO4 localizes to nucleolus-adjacent Cajal bodies, sites of snRNP complex maturation. Here we demonstrate that AGO4 also localizes to a second class of nuclear bodies, called AB-bodies, which are found immediately adjacent to condensed 45S ribosomal DNA (rDNA) sequences. AB-bodies also contain other proteins involved in RNA-directed DNA methylation including NRPD1b (a subunit of the RNA Polymerase IV complex, RNA PolIV), NRPD2 (a second subunit of this complex), and the DNA methyltransferase DRM2. These two classes of AGO4 bodies are structurally independent--disruption of one class does not affect the other--suggesting a dynamic regulation of AGO4 within two distinct nuclear compartments in Arabidopsis. Abolishing Cajal body formation in a coilin mutant reduced overall AGO4 protein levels, and coilin dicer-like3 double mutants showed a small decrease in DNA methylation beyond that seen in dicer-like3 single mutants, suggesting that Cajal bodies are required for a fully functioning DNA methylation system in Arabidopsis.
Resumo:
Cytosine DNA methylation protects eukaryotic genomes by silencing transposons and harmful DNAs, but also regulates gene expression during normal development. Loss of CG methylation in the Arabidopsis thaliana met1 and ddm1 mutants causes varied and stochastic developmental defects that are often inherited independently of the original met1 or ddm1 mutation. Loss of non-CG methylation in plants with combined mutations in the DRM and CMT3 genes also causes a suite of developmental defects. We show here that the pleiotropic developmental defects of drm1 drm2 cmt3 triple mutant plants are fully recessive, and unlike phenotypes caused by met1 and ddm1, are not inherited independently of the drm and cmt3 mutations. Developmental phenotypes are also reversed when drm1 drm2 cmt3 plants are transformed with DRM2 or CMT3, implying that non-CG DNA methylation is efficiently re-established by sequence-specific signals. We provide evidence that these signals include RNA silencing though the 24-nucleotide short interfering RNA (siRNA) pathway as well as histone H3K9 methylation, both of which converge on the putative chromatin-remodeling protein DRD1. These signals act in at least three partially intersecting pathways that control the locus-specific patterning of non-CG methylation by the DRM2 and CMT3 methyltransferases. Our results suggest that non-CG DNA methylation that is inherited via a network of persistent targeting signals has been co-opted to regulate developmentally important genes. © 2006 Chan et al.