999 resultados para REY geochemistry
Resumo:
Biological productivity in the modern equatorial Pacific Ocean, a region with high nutrients and low chlorophyll, is currently limited by the micronutrient Fe. In order to test whether Fe was limiting in the past and to identify potential pathways of Fe delivery that could drive Fe fertilization (i.e., dust delivery from eolian inputs vs. Fe supplied by the Equatorial Undercurrent), we chemically isolated the terrigenous material from sediment along a cross-equatorial transect in the central equatorial Pacific at 140°W and at Ocean Drilling Program Site 850 in the eastern equatorial Pacific. We quantified the contribution from each potential Fe-bearing terrigenous source using a suite of chemical- and isotopic discrimination strategies as well as multivariate statistical techniques. We find that the distribution of the terrigenous sources (i.e., Asian loess, South American ash, Papua New Guinea, and ocean island basalt) varies through time, latitude, and climate. Regardless of which method is used to determine accumulation rate, there also is no relationship between flux of any particular Fe source and climate. Moreover, there is no connection between a particular Fe source or pathway (eolian vs. Undercurrent) to total productivity during the Last Glacial Maximum, Pleistocene glacial episodes, and the Miocene "Biogenic Bloom". This would suggest an alternative process, such as an interoceanic reorganization of nutrient inventories, may be responsible for past changes in total export in the open ocean, rather than simply Fe supply from dust and/or Equatorial Undercurrent processes. Additionally, perhaps a change in Fe source or flux is related to a change in a particular component of the total productivity (e.g., the production of organic matter, calcium carbonate, or biogenic opal).
Resumo:
Two ash horizons have been identified in Hole 549, one in the upper Paleocene (basal NP9), the other in the upper Eocene (NP18); both are mixed lithic crystal tuffs of rhyolitic composition. These tuffs are absent in Hole 550 owing to unconformities, but the basal Eocene (NP10) of Hole 550 includes a series of over 50 thin bentonite layers. Intermediate plagioclase associated with these bentonites indicates that the original ash was of basaltic to andesitic composition. The bentonites are absent in Hole 549, probably because of an unconformity, but they have been identified in Hole 401 (Leg 48, Bay of Biscay). Two of the pyroclastic phases can be matched with phases previously reported for the North Sea Basin. The bentonites of Site 550 are probably equivalent to the widespread "ash series" of northwestern Europe, which may therefore be regarded as being lower Eocene in terms of Martini's calcareous nannoplankton zonation.
Resumo:
We report the major, rare earth, and other trace element compositions of clinopyroxenes from two Leg 140, Hole 504B diabase dikes. These pyroxenes reflect a complex history of crystal growth and magma evolution. The large ranges of composition found reflect incorporation of exotic phenocrysts into the melt, the early formation of crystal clots before dike intrusion during an undercooling event, and in-situ fractionation of melt during and following dike emplacement. Some of the pyroxenes occur in coarse two- and three-phase glomerocrysts, which may be ôprotogabbrosö representing early stages of melt crystallization in the lower crust. Large variations in trace element composition are found. These likely reflect heterogeneous nucleation and growth of plagioclase and pyroxene in the melt, as well as complex interface kinetics that may affect partition coefficients during rapid crystal growth expected during undercooling. This can explain the formation of irregular chemical sector zoning in some equant anhedral phenocrysts. Undercooling of magmas in the lower crust most likely reflects input of fresh hot melt into a stagnating melt-storage zone. Dikes intruded upward from an inflated melt-storage zone during such a cycle are likely to be larger than those intruded from the storage zone between such cycles, when it would be deflated, consistent with the greater overall thickness of the phyric dikes in the Leg 140 section of Hole 504B.
Resumo:
Sixty-five chert, porcellanite, and siliceous-chalk samples from Deep Sea Drilling Project Leg 62 were analyzed by petrography, scanning electron microscopy, analysis by energy-dispersive X-rays, X-ray diffraction, X-ray spectroscopy, and semiquantitative emission spectroscopy. Siliceous rocks occur mainly in chalks, but also in pelagic clay and marlstone at Site 464. Overall, chert probably constitutes less than 5% of the sections and occurs in deposits of Eocene to Barremian ages at sub-bottom depths of 10 to 820 meters. Chert nodules and beds are commonly rimmed by quartz porcellanite; opal-CT-rich rocks are minor in Leg 62 sediments 65 to 108 m.y. old and at sub-bottom depths of 65 to 520 meters. Chert ranges from white to black, shades of gray and brown being most common; yellow-brown and red-brown jaspers occur at Site 464. Seventy-eight percent of the studied cherts contain easily recognizable burrow structures. The youngest chert at Site 463 is a quartz cast of a burrow. Burrow silica maturation is always one step ahead of host-rock silicification. Burrows are commonly loci for initial silicification of the host carbonate. Silicification takes place by volume-f or-volume replacement of carbonate sediment, and more-clay-rich sediment at Site 464. Nannofossils are commonly pseudomorphically replaced by quartz near the edges of chert beds and nodules. Other microfossils, mostly radiolarians and foraminifers, whether in chalk or chert, can be either filled with or replaced by calcite, opal-CT, and (or) quartz. Chemical micro-environments ultimately control the removal, transport, and precipitation of calcite and silica. Two cherts from Site 465 contain sulfate minerals replaced by quartz. Site 465 was never subaerially exposed after sedimentation began, and the formation of the sulfate minerals and their subsequent replacement probably occurred in the marine environment. Several other cherts with odd textures are described in this paper, including (1) a chert breccia cemented by colloform opal-CT and chalcedony, (2) a transition zone between white porcellanite containing opal-CT and quartz and a burrowed brown chert, consisting of radial aggregates of opal-CT with hollow centers, and (3) a chert that consists of silica-replaced calcite pseudospherules interspersed with streaks and circular masses of dense quartz. X-ray-diffraction analyses show that when data from all sites are considered there are poorly defined trends indicating that older cherts have better quartz crystallinity than younger ones, and that opal-CT crystallite size increases and opal-CT cf-spacings decrease with depth of occurrence in the sections. In a general way, depth of burial and the presence of calcite promote the ordering in the opal-CT crystal structure which allows its eventual conversion to quartz. Opal-CT in porcellanites converts to quartz after reaching a minimum d-spacing of 4.07 Å. Quartz/opal-CT ratios and quartz crystallinity vary randomly on a fine scale across four chert beds, but quartz crystallinity increases from the edge to the center of a fifth chert bed; this may indicate maturation of the silica. Twenty-four rocks were analyzed for their major- and minor-element compositions. Many elements in cherts are closely related to major mineral components. The carbonate component is distinguished by high values of CaO, MgO, Mn, Ba, Sr, and (for unknown reasons) Zr. Tuffaceous cherts have high values of K and Al, and commonly Zn, Mo, and Cr. Pure cherts are characterized by high SiO2 and B. High B may be a good indicator of formation of chert in an open marine environment, isolated from volcanic and terrigenous materials.
Resumo:
Major oxide and trace element determinations of the composition basalts from the bottom of Hole 487, together with microprobe analyses of their minerals (olivine, magnesiochromite, salite, and plagioclase), prove that they are depleted oceanic tholeiites.
Resumo:
Epiclastic volcanogenic rocks recovered from the Kerguelen Plateau during Ocean Drilling Program Legs 119 and 120 comprise (pre-)Cenomanian(?) claystones (52 m thick, Site 750); a Turonian(?) basaltic pebble conglomerate (1.2 m thick, Site 748; Danian mass flows (45 m thick, Site 747); and volcanogenic debris flows of Quaternary age at Site 736 (clastic apron of Kerguelen Island). Pyroclastic rocks comprise numerous Oligocene to Quaternary marine ash layers. The epiclastic sediments with transitional mid-ocean-ridge basalt (T-MORB) origin indicate weathering (Site 750) and erosion (Site 747) of Early Cretaceous T-MORB from a then-emergent Kerguelen Plateau, connected to Late Cretaceous tectonic events. The basal pebble conglomerate of Site 748 has an oceanic-island basalt (OIB) composition and denotes erosion and reworking of seamount to oceanic-island-type volcanic sources. The vitric- to crystal-rich marine ash layers are a few centimeters thick, have rather uniform grain sizes around 60 ± 40 µm, and are a result of Plinian eruptions. Crystal-poor silicic vitric ashes may also represent co-ignimbrite ashes. The ash layers have bimodal, basaltic, and silicic compositions with a few intermediate shards. The basaltic ashes are evolved high-titanium T-MORB; a few grains in a silicic pumice lapilli layer have a low-titanium basaltic composition. The silicic ashes comprise trachytic and rhyolitic glass shards belonging to a high-K series, except for a few low-K glasses admixed to a basaltic ash layer. Feldspar and clinopyroxene compositions fit the glass chemistry: high-Ti tholeiite-basaltic glasses have Plagioclase of An40-80 and pigeonite to augite clinopyroxene compositions. Silicic ashes have K-rich anorthoclase and minor Plagioclase around An20 and ferriaugitic to hedenbergitic clinopyroxene compositions. The line of magmatic evolution for the glass shards is not compatible with simple two-end member (high-Ti T-MORB and high-K rhyolite) mixing, but favors successive Ca-Mg-Fe pyroxene, Ti magnetite, and apatite fractionation, and K-rich alkali feldspar fractionation in trachytic magmas to yield rhyolitic compositions. Plagioclase fractionation occurs throughout. This qualitative model is in basic accordance with the observed mineral assemblage. However, as the time span for explosive volcanism spans >30 m.y., this basic model cannot comply with fractional crystallization in a single magma reservoir. The ash layers resulted from highly explosive eruptions on Kerguelen and, with less probability, Heard islands since the Oligocene. The explosive history starts with widespread Oligocene basaltic ash layers that indicate sea-level or subaerial volcanism on the Northern Kerguelen Plateau. After a hiatus of 24 m.y.(?), explosive magmatic activity was vigorously renewed in the late Miocene with more silicic eruptions. A peak in explosive activity is inferred for the Pliocene-Pleistocene. The composition and evolution of Kerguelen Plateau ash layers resemble those from other hotspot-induced, oceanic-island realms such as Iceland and Jan Mayen in the North Atlantic, and the Canary Islands archipelago in the Central Atlantic.
Resumo:
The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.