954 resultados para RBF NLGA reti neurali quadrotor identificazione Matlab simulatori controlli automatici


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid EVs are the way forward for green transportation and for establishing low-carbon economy. This paper presents a split converter-fed four-phase switched reluctance motor (SRM) drive to realize flexible integrated charging functions (dc and ac sources). The machine is featured with a central-tapped winding node, eight stator slots, and six rotor poles (8/6). In the driving mode, the developed topology has the same characteristics as the traditional asymmetric bridge topology but better fault tolerance. The proposed system supports battery energy balance and on-board dc and ac charging. When connecting with an ac power grid, the proposed topology has a merit of the multilevel converter; the charging current control can be achieved by the improved hysteresis control. The energy flow between the two batteries is balanced by the hysteresis control based on their state-of-charge conditions. Simulation results in MATLAB/Simulink and experiments on a 150-W prototype SRM validate the effectiveness of the proposed technologies, which may provide a solution to EV charging issues associated with significant infrastructure requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a ‘drive-by’ method of bridge inspection using an instrumented vehicle. Accelerometers on the vehicle are proposed as a means of detecting damage on the bridge in the time it takes for the vehicle to cross the bridge at full highway speed. For a perfectly smooth road profile, the method is shown to be feasible. Changes in bridge damping, which is an indicator of damage, are clearly visible in the acceleration signal of a quarter-car vehicle on a smooth road surface modelled using MatLab. When road profile is considered, the influence of changes in bridge damping on the vehicle acceleration signal is much less clear. However, when a half-car model is used on a road with a rough profile, it is again possible to detect changes in bridge damping, provided the vehicle has two identical axles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel and effective lip-based biometric identification approach with the Discrete Hidden Markov Model Kernel (DHMMK) is developed. Lips are described by shape features (both geometrical and sequential) on two different grid layouts: rectangular and polar. These features are then specifically modeled by a DHMMK, and learnt by a support vector machine classifier. Our experiments are carried out in a ten-fold cross validation fashion on three different datasets, GPDS-ULPGC Face Dataset, PIE Face Dataset and RaFD Face Dataset. Results show that our approach has achieved an average classification accuracy of 99.8%, 97.13%, and 98.10%, using only two training images per class, on these three datasets, respectively. Our comparative studies further show that the DHMMK achieved a 53% improvement against the baseline HMM approach. The comparative ROC curves also confirm the efficacy of the proposed lip contour based biometrics learned by DHMMK. We also show that the performance of linear and RBF SVM is comparable under the frame work of DHMMK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Richardson–Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rateof O(K^2), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor off ive, of the scaled H-B method on both synthetic and real 3D images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the study presented in this paper was to investigate the feasibility using support vector machines (SVM) for the prediction of the fresh properties of self-compacting concrete. The radial basis function (RBF) and polynomial kernels were used to predict these properties as a function of the content of mix components. The fresh properties were assessed with the slump flow, T50, T60, V-funnel time, Orimet time, and blocking ratio (L-box). The retention of these tests was also measured at 30 and 60 min after adding the first water. The water dosage varied from 188 to 208 L/m3, the dosage of superplasticiser (SP) from 3.8 to 5.8 kg/m3, and the volume of coarse aggregates from 220 to 360 L/m3. In total, twenty mixes were used to measure the fresh state properties with different mixture compositions. RBF kernel was more accurate compared to polynomial kernel based support vector machines with a root mean square error (RMSE) of 26.9 (correlation coefficient of R2 = 0.974) for slump flow prediction, a RMSE of 0.55 (R2 = 0.910) for T50 (s) prediction, a RMSE of 1.71 (R2 = 0.812) for T60 (s) prediction, a RMSE of 0.1517 (R2 = 0.990) for V-funnel time prediction, a RMSE of 3.99 (R2 = 0.976) for Orimet time prediction, and a RMSE of 0.042 (R2 = 0.988) for L-box ratio prediction, respectively. A sensitivity analysis was performed to evaluate the effects of the dosage of cement and limestone powder, the water content, the volumes of coarse aggregate and sand, the dosage of SP and the testing time on the predicted test responses. The analysis indicates that the proposed SVM RBF model can gain a high precision, which provides an alternative method for predicting the fresh properties of SCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulation is a well-established and effective approach to the development of fuel-efficient and low-emissions vehicles in both on-highway and off-highway applications.

The simulation of on-highway automotive vehicles is widely reported in literature, whereas research relating to non-automotive and off-highway vehicles is relatively sparse. This review paper focuses on the challenges of simulating such vehicles and discusses the differences in the approach to drive cycle testing and experimental validation of vehicle simulations. In particular, an inner-city diesel-electric hybrid bus and an ICE (Internal Combustion Engine) powered forklift truck will be used as case studies.

Computer prediction of fuel consumption and emissions of automotive vehicles on standardised drive cycles is well-established and commercial software packages such as AVL CRUISE have been specifically developed for this purpose. The vehicles considered in this review paper present new challenges from both the simulation and drive-cycle testing perspectives. For example, in the case of the forklift truck, the drive cycles involve reversing elements, variable mass, lifting operations, and do not specify a precise velocity-time profile. In particular, the difficulties associated with the prediction of productivity, i.e. the maximum rate of completing a series of defined operations, are discussed. In the case of the hybrid bus, the standardised drive cycles are unrepresentative of real-life use and alternative approaches are required in the development of efficient and low-emission vehicles.

Two simulation approaches are reviewed: the adaptation of a standard automotive vehicle simulation package, and the development of bespoke models using packages such as MATLAB/Simulink.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predictions which invoke evolutionary mechanisms ar e hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interac tions in specific physical or social environments o ver many generations. The outcomes have implications fo r understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/non-expresser strategies) when injured, and of helping, ignoring or exploiting another in pain (altruistic/non-altruistic/selfish strategies) . Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury inte rrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, conti ngencies evident from experimental work with a variety of mammals, over a few interactions, were r eplicated in the agent-based model after selection pressure over many generations. More energy-demandi ng expression of pain reduced its frequency in successive generations, and increasing injury frequ ency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased e xpression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits o f helping hardly changed its frequency, while increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent- based modeling allows simulation of complex behavio urs and environmental pressures over evolutionary time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development and implementation of a digital simulation model of a threephase, three-leg, three-winding power transformer. The proposed model, implemented in MATLAB environment, is based on the simultaneous analysis of both magnetic and electric lumped-parameters equivalents circuits, and it is intended to study its adequacy to incorporate, at a later stage, the influences of the occurrence of windings interturn short-circuit faults. Both simulation and laboratory tests results, obtained so far, for a three-phase, 6 kVA transformer, demonstrate the adequacy of the model under normal operating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development and implementation of a digital simulation model of a three-phase, three-leg, power transformer. The proposed model, implemented in MATLAB environment, is based on the physical concept of representing windings as mutually coupled coils, and it is intended to study its adequacy to incorporate, at a later stage, the influences of the occurrence of windings inter- turn short-circuits. Both simulation and laboratory tests results, obtained so far, for a three-phase, 6 kVA transformer, demonstrate the adequacy of the model under normal operating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação mest., Oceanografia, Universidade do Algarve, 2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Biologia Marinha, Especialização em Ecologia e Conservação, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a comparison between a physical model and an artificial neural network model (NN) for temperature estimation inside a building room. Despite the obvious advantages of the physical model for structure optimisation purposes, this paper will test the performance of neural models for inside temperature estimation. The great advantage of the NN model is a big reduction of human effort time, because it is not needed to develop the structural geometry and structural thermal capacities and to simulate, which consumes a great human effort and great computation time. The NN model deals with this problem as a “black box” problem. We describe the use of the Radial Basis Function (RBF), the training method and a multi-objective genetic algorithm for optimisation/selection of the RBF neural network inputs and number of neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This text describes a real data acquisition and identification system implemented in a soilless greenhouse located at the University of Algarve (south of Portugal). Using the Real Time Workshop, Simulink, Matlab and the C programming language a system was developed to perform real-time data acquisition from a set of sensors.