976 resultados para Queensland Fruit Fly
Resumo:
Tiivistelmä: Emäksisen tuhkalaskeuman vaikutus rahkasammaliin Niinsaarensuolla Koillis-Virossa
Resumo:
Tiivistelmä: Emäksisen tuhkalaskeuman vaikutus rahkasammaliin Niinsaarensuolla Koillis-Virossa
Resumo:
LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.
Resumo:
People in all walks of life have dreams. Is your dream to fly? Some of the most frequently asked questions about learning to fly are listed below. While they will not answer all your questions, they will send you in the right direction - up.
Resumo:
Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Resumo:
Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.
Resumo:
Nitrate reductase is the first enzyme in the pathway of nitrate reduction by plants, followed by glutamine synthetase, which incorporates ammonia to glutamine. The purpose of this study was to evaluate the nitrate reductase and glutamine synthetase activity, total soluble protein content, N and Ni content in coffee leaves during fruit development under field conditions to establish new informations to help assess the N nutritional status and fertilizer management. The experimental design was in randomized complete blocks, arranged in a 3 x 6 factorial design, with five replications. The treatments consisted of 3 N rates (0 - control, 150 and 300 kg ha-1) and six evaluation periods (January, February, March, April, May, and June) in six-year-old coffee (Coffea arabica L.) plants of Catuaí Vermelho IAC 44 cv. The nitrate reductase and glutamine synthetase activities, leaf soluble protein, and N concentrations increased linearly with the N rates. During fruit development, the enzyme activity, leaf soluble protein and N content decreased, due to the leaf senescence process caused by nutrient mobilization to other organs, e.g, to the berries. Leaf Ni increased during fruit development. Beans and raisin-fruits of plants well-supplied with N had higher Ni contents. Enzyme activities, total leaf N and leaf soluble protein, evaluated during the green fruit stage in March, were significantly correlated with coffee yield. These variables can therefore be useful for an early assessment of the coffee N nutritional status as well as coffee yield and N fertilization management.
Resumo:
With the support of the Iowa Fly Ash Affiliates, research on reclaimed fly ash for use as a construction material has been ongoing since 1991. The material exhibits engineering properties similar to those of soft limestone or sandstone and a lightweight aggregate. It is unique in that it is rich in calcium, silica, and aluminum and exhibits pozzolanic properties (i.e. gains strength over time) when used untreated or when a calcium activator is added. Reclaimed Class C fly ashes have been successfully used as a base material on a variety of construction projects in southern and western Iowa. A pavement design guide has been developed with the support of the Iowa Fly Ash Affiliates. Soils in Iowa generally rate fair to poor as subgrade soils for paving projects. This is especially true in the southern quarter of the state and for many areas of eastern and western Iowa. Many of the soil types encountered for highway projects are unsuitable soils under the current Iowa DOT specifications. The bulk of the remaining soils are Class 10 soils. Select soils for use directly under the pavement are often difficult to find on a project, and in many instances are economically unavailable. This was the case for a 4.43-mile grading (STP-S- 90(22)-SE-90) and paving project in Wapello County. The project begins at the Alliant Utilities generating station in Chillicothe, Iowa, and runs west to the Monroe-Wapello county line. This road carries a significant amount of truck traffic hauling coal from the generating station to the Cargill corn processing plant in Eddyville, Iowa. The proposed 10-inch Portland Cement Concrete (PCC) pavement was for construction directly on a Class 10 soil subgrade, which is not a desirable condition if other alternatives are available. Wapello County Engineer Wendell Folkerts supported the use of reclaimed fly ash for a portion of the project. Construction of about three miles of the project was accomplished using 10 inches of reclaimed fly ash as a select fill beneath the PCC slab. The remaining mile was constructed according to the original design to be used as a control section for performance monitoring. The project was graded during the summers of 1998 and 1999. Paving was completed in the fall of 1999. This report presents the results of design considerations and laboratory and field testing results during construction. Recommendations for use of reclaimed fly ash as a select fill are also presented.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
BACKGROUND: Citrus fruit has shown a favorable effect against various cancers. To better understand their role in cancer risk, we analyzed data from a series of case-control studies conducted in Italy and Switzerland. PATIENTS AND METHODS: The studies included 955 patients with oral and pharyngeal cancer, 395 with esophageal, 999 with stomach, 3,634 with large bowel, 527 with laryngeal, 2,900 with breast, 454 with endometrial, 1,031 with ovarian, 1,294 with prostate, and 767 with renal cell cancer. All cancers were incident and histologically confirmed. Controls were admitted to the same network of hospitals for acute, nonneoplastic conditions. Odds ratios (OR) were estimated by multiple logistic regression models, including terms for major identified confounding factors for each cancer site, and energy intake. RESULTS: The ORs for the highest versus lowest category of citrus fruit consumption were 0.47 (95% confidence interval, CI, 0.36-0.61) for oral and pharyngeal, 0.42 (95% CI, 0.25-0.70) for esophageal, 0.69 (95% CI, 0.52-0.92) for stomach, 0.82 (95% CI, 0.72-0.93) for colorectal, and 0.55 (95% CI, 0.37-0.83) for laryngeal cancer. No consistent association was found with breast, endometrial, ovarian, prostate, and renal cell cancer. CONCLUSIONS: Our findings indicate that citrus fruit has a protective role against cancers of the digestive and upper respiratory tract.
Resumo:
Local adaptation of populations requires some degree of spatio-temporal isolation. Previous studies of the two dung fly species Scathophaga stercoraria and Sepsis cynipsea have revealed low levels of geographic and altitudinal genetic differentiation in quantitative life history and morphological traits, but instead high degrees of phenotypic plasticity. These patterns suggest that gene flow is extensive despite considerable geographic barriers and large spatio-temporal variation in selection on body size and related traits. In this study we addressed this hypothesis by investigating genetic differentiation of dung fly populations throughout Switzerland based on the same 10 electrophoretic loci in each species. Overall, we found no significant geographic differentiation of populations for either species. This is inconsistent with the higher rates of gene flow expected due to better flying capacity of the larger S. stercoraria. However, heterozygote deficiencies within populations indicated structuring on a finer scale, seen for several loci in S. cynipsea, and for the locus PGM (Phosphoglucomutase) in S. stercoraria. Additionally, S. cynipsea showed a tendency towards a greater gene diversity at higher altitudes, mediated primarily by the locus MDH (malate dehydrogenase), at which a second allele was only present in populations above 1000 m. This may be caused by increased environmental stress at higher altitudes in this warm-adapted species. MDH might thus be a candidate locus subject to thermal selection in this species, but this remains to be corroborated by direct evidence. In S. stercoraria, no altitudinal variation was found.
Resumo:
Coevolution is among the main forces shaping the biodiversity on Earth. In Eurasia, one of the best-known plant-insect interactions showing highly coevolved features involves the fly genus Chiastocheta and its host-plant Trollius. Although this system has been widely studied from an ecological point of view, the phylogenetic relationships and biogeographic history of the flies have remained little investigated. In this integrative study, we aim to test the monophyly of the five Chiastocheta eco-morphological groups, defined by Pellmyr in 1992, by inferring a mitochondrial phylogeny. We further apply a new approach to assess the effect of (i) different molecular substitution rates and (ii) phylogenetic uncertainty on the inference of the spatio-temporal evolution of the group. From a taxonomic point of view, we demonstrate that only two of Pellmyr's groups (rotundiventris and dentifera) are phylogenetically supported, the other species appearing para- or polyphyletic. We also identify the position of C. lophota, which was not included in previous surveys. From a spatio-temporal perspective, we show that the genus arose during the Pliocene in Europe. Our results also indicate that at least four large-scale dispersal events are required to explain the current distribution of Chiastocheta. Moreover, each dispersal to or from Asia is associated with a host-shift and seems to correspond to an increase in speciation rates. Finally, we highlight the correlation between diversification and climatic fluctuations, which indicate that the cycles of global cooling over the last million years had an influence on the radiation of the group.
Resumo:
BACKGROUND: Cleavage of messenger RNA (mRNA) precursors is an essential step in mRNA maturation. The signal recognized by the cleavage enzyme complex has been characterized as an A rich region upstream of the cleavage site containing a motif with consensus AAUAAA, followed by a U or UG rich region downstream of the cleavage site. RESULTS: We studied these signals using exhaustive databases of cleavage sites obtained from aligning raw expressed sequence tags (EST) sequences to genomic sequences in Homo sapiens and Drosophila melanogaster. These data show that the polyadenylation signal is highly conserved in human and fly. In addition, de novo motif searches generated a refined description of the U-rich downstream sequence (DSE) element, which shows more divergence between the two species. These refined motifs are applied, within a Hidden Markov Model (HMM) framework, to predict mRNA cleavage sites. CONCLUSION: We demonstrate that the DSE is a specific motif in both human and Drosophila. These findings shed light on the sequence correlates of a highly conserved biological process, and improve in silico prediction of 3' mRNA cleavage and polyadenylation sites.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
Fly ash was used to replace 15% of the cement in C3WR and C6WR concrete paving mixes containing ASTM C494 Type A water reducin9 admixtures. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. When Class C ashes were used they were substituted on the basis of 1 pound of ash added for each pound of cement deleted. When Class F was used it was substituted on the basis of 1.25 pounds of ash added for each pound of cement deleted. Compressive strengths of the water reduced mixes, with and without fly ash, were determined at 7, 28, and 56 days of age. In every case except one the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. An excellent correlation existed between the C3WR and C6WR mixes both with and without fly ash substitutions. The freeze-thaw durability of the concrete studied was not affected by presence or absence of fly ash. The data gathered suggests that the present Class C water reduced concrete paving mixes can be modified to allow the substitution of 15% of the cement with an approved fly ash.