894 resultados para Quasilinear Elliptic Problems


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active learning plays a strong role in mathematics and statistics, and formative problems are vital for developing key problem-solving skills. To keep students engaged and help them master the fundamentals before challenging themselves further, we have developed a system for delivering problems tailored to a student‟s current level of understanding. Specifically, by adapting simple methodology from clinical trials, a framework for delivering existing problems and other illustrative material has been developed, making use of macros in Excel. The problems are assigned a level of difficulty (a „dose‟), and problems are presented to the student in an order depending on their ability, i.e. based on their performance so far on other problems. We demonstrate and discuss the application of the approach with formative examples developed for a first year course on plane coordinate geometry, and also for problems centred on the topic of chi-square tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider one-dimensional diffusions with constant coefficients in a finite interval with jump boundary and a certain deterministic jump distribution. We use coupling methods in order to identify the spectral gap in the case of a large drift and prove that there is a threshold drift above which the bottom of the spectrum no longer depends on the drift. As a corollary to our result we are able to answer two questions concerning elliptic eigenvalue problems with non-local boundary conditions formulated previously by Iddo Ben-Ari and Ross Pinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss some of the recent progress in the field of Toeplitz operators acting on Bergman spaces of the unit disk, formulate some new results, and describe a list of open problems -- concerning boundedness, compactness and Fredholm properties -- which was presented at the conference "Recent Advances in Function Related Operator Theory'' in Puerto Rico in March 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.