888 resultados para QoS algorithms
Resumo:
Cognitive Radio has been proposed as a key technology to significantly improve spectrum usage in wireless networks by enabling unlicensed users to access unused resource. We present new algorithms that are needed for the implementation of opportunistic scheduling policies that maximize the throughput utilization of resources by secondary users, under maximum interference constraints imposed by existing primary users. Our approach is based on the Belief Propagation (BP) algorithm, which is advantageous due to its simplicity and potential for distributed implementation. We examine convergence properties and evaluate the performance of the proposed BP algorithms via simulations and demonstrate that the results compare favorably with a benchmark greedy strategy. © 2013 IEEE.
Resumo:
现有区分服务网络的保证转发服务可提供稳定的带宽保证,但缺乏保证时延和分组丢失性能的有效方案.基于对RIO队列的稳态性能分析,提出两种自适应调整控制策略的主动队列管理算法(ARIO-D和ARIO-L).仿真结果表明,这两种算法在保持RIO算法带宽保证能力的同时,还可以提供稳定的和可区分的时延和分组丢失性能.采用ARIO-D和ARIO-L的保证转发服务可以为多媒体流量提供多种服务质量的定量保证. Current assured forwarding (AF) service in differentiated services (DiffServ) networks can provide stable guarantees in throughput, but is lacking of efficient schemes in ensuring queuing delay and loss ratio. By analyzing the steady state operating point of RIO, this paper proposes two active queue management algorithms with adaptive control policy, namely ARIO-D and ARIO-L. These two algorithms can provide differentiated performance in, respectively, queuing delay and loss ratio, in addition to throughput guarantee. By deploying ARIO-D and ARIO-L, AF service can provide quantitative guarantees for multimedia traffic with multiple QoS metrics.
Resumo:
We describe a novel and potentially important tool for candidate subunit vaccine selection through in silico reverse-vaccinology. A set of Bayesian networks able to make individual predictions for specific subcellular locations is implemented in three pipelines with different architectures: a parallel implementation with a confidence level-based decision engine and two serial implementations with a hierarchical decision structure, one initially rooted by prediction between membrane types and another rooted by soluble versus membrane prediction. The parallel pipeline outperformed the serial pipeline, but took twice as long to execute. The soluble-rooted serial pipeline outperformed the membrane-rooted predictor. Assessment using genomic test sets was more equivocal, as many more predictions are made by the parallel pipeline, yet the serial pipeline identifies 22 more of the 74 proteins of known location.
Resumo:
Dedicated short-range communications (DSRC) are a promising vehicle communication technique for collaborative road safety applications (CSA). However, road safety applications require highly reliable and timely wireless communications, which present big challenges to DSRC based vehicle networks on effective and robust quality of services (QoS) provisioning due to the random channel access method applied in the DSRC technique. In this paper we examine the QoS control problem for CSA in the DSRC based vehicle networks and presented an overview of the research work towards the QoS control problem. After an analysis of the system application requirements and the DSRC vehicle network features, we propose a framework for cooperative and adaptive QoS control, which is believed to be a key for the success of DSRC on supporting effective collaborative road safety applications. A core design in the proposed QoS control framework is that network feedback and cross-layer design are employed to collaboratively achieve targeted QoS. A design example of cooperative and adaptive rate control scheme is implemented and evaluated, with objective of illustrating the key ideas in the framework. Simulation results demonstrate the effectiveness of proposed rate control schemes in providing highly available and reliable channel for emergency safety messages. © 2013 Wenyang Guan et al.
Resumo:
A statistics-based method using genetic algorithms for predicting discrete sequences is presented. The prediction of the next value is based upon a fixed number of previous values and the statistics offered by the training data. According to the statistics, in similar past cases different values occurred next. If these values are considered with the appropriate weights, the forecast is successful. Weights are generated by genetic algorithms.
Resumo:
Accelerated probabilistic modeling algorithms, presenting stochastic local search (SLS) technique, are considered. General algorithm scheme and specific combinatorial optimization method, using “golden section” rule (GS-method), are given. Convergence rates using Markov chains are received. An overview of current combinatorial optimization techniques is presented.
Resumo:
In this paper it is explained how to solve a fully connected N-City travelling salesman problem (TSP) using a genetic algorithm. A crossover operator to use in the simulation of a genetic algorithm (GA) with DNA is presented. The aim of the paper is to follow the path of creating a new computational model based on DNA molecules and genetic operations. This paper solves the problem of exponentially size algorithms in DNA computing by using biological methods and techniques. After individual encoding and fitness evaluation, a protocol of the next step in a GA, crossover, is needed. This paper also shows how to make the GA faster via different populations of possible solutions.
Resumo:
Today, due to globalization of the world the size of data set is increasing, it is necessary to discover the knowledge. The discovery of knowledge can be typically in the form of association rules, classification rules, clustering, discovery of frequent episodes and deviation detection. Fast and accurate classifiers for large databases are an important task in data mining. There is growing evidence that integrating classification and association rules mining, classification approaches based on heuristic, greedy search like decision tree induction. Emerging associative classification algorithms have shown good promises on producing accurate classifiers. In this paper we focus on performance of associative classification and present a parallel model for classifier building. For classifier building some parallel-distributed algorithms have been proposed for decision tree induction but so far no such work has been reported for associative classification.
Resumo:
With the appearance of INTERNET technologies the developers of algorithm animation systems have shifted to build on-line system with the advantages of platform-independence and open accessibility over earlier ones. As a result, there is ongoing research in the re-design and re-evaluation of AAS in order to transform them in task-oriented environments for design of algorithms in on-line mode. The experimental study reported in the present paper contributes in this research.
Resumo:
We consider a model of overall telecommunication network with virtual circuits switching, in stationary state, with Poisson input flow, repeated calls, limited number of homogeneous terminals and 8 types of losses. One of the main problems of network dimensioning/redimensioning is estimation of traffic offered in network because it reflects on finding of necessary number of circuit switching lines on the basis of the consideration of detailed users manners and target Quality of Service (QoS). In this paper we investigate the behaviour of the traffic offered in a network regarding QoS variables: “probability of blocked switching” and “probability of finding B-terminals busy”. Numerical dependencies are shown graphically. A network dimensioning task (NDT) is formulated, solvability of the NDT and the necessary conditions for analytical solution are researched as well. International Journal "Information Technologies and Knowledge" Vol.2 / 2008 174 The received results make the network dimensioning/redimensioning, based on QoS requirements easily, due to clearer understanding of important variables behaviour. The described approach is applicable directly for every (virtual) circuit switching telecommunication system e.g. GSM, PSTN, ISDN and BISDN. For packet - switching networks, at various layers, proposed approach may be used as a comparison basis and when they work in circuit switching mode (e.g. VoIP).
Resumo:
The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshkoff and Lubomir Tschakalo ff , Sofia, July, 2006.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
When designing specification on-board algorithm (the algorithm, realized on on-board digital computing machine, and algorithm to activity of the crew necessary to conduct the estimation their realizing. Presented computer system allows in interactive mode with user to value the temporary expenseses of the operator on processes decision making and their realizing, participations it in process of the spying.
Resumo:
The paper is devoted to the description of hybrid pattern recognition method developed by research groups from Russia, Armenia and Spain. The method is based upon logical correction over the set of conventional neural networks. Output matrices of neural networks are processed according to the potentiality principle which allows increasing of recognition reliability.
Resumo:
* This work has been partially supported by Spanish Project TIC2003-9319-c03-03 “Neural Networks and Networks of Evolutionary Processors”.