973 resultados para Push-out bond strength test
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
Potassium oxalate desensitizers were previously shown to effectively reduce the immediate permeability of resin-bonded dentin. The current study evaluated whether the effect of the combined application of oxalate with etch-and-rinse adhesives interferes with the durability of resin-dentin bonds when using etch-and-rinse adhesives. The bond strength of resin-bonded dentin specimens composed of two-step or three-step etch-and-rinse adhesives (Single Bond, One-Step and Scotchbond Multi-Purpose, respectively) was tested immediately (24 hours) and after 12 months of water storage. The adhesives were used either according to the manufacturers` instructions (control groups) or after treating acid-etched dentin with a potassium oxalate gel (BisBlock, BISCO, Inc). The treatment of dentin with potassium oxalate was shown to negatively affect the baseline bond strength of resin-bonded dentin specimens, regardless of the adhesive used (p<0.05). After storage, the bond strength of the resin-bonded interfaces was significantly reduced for all the tested groups (p<0.001). Nevertheless, the rate of decreasing bond strength was significantly lower for oxalate-treated specimens than for the controls (p<0.05).
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine`s capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine`s potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
In repair works of reinforced concrete, patch repairs tend to crack in the interfacial zone between the mortar and the old concrete. This occurs basically due to the high degree of restriction that acts on a patch repair. For this reason, the technology of patch repair needs to be the subject of a discussion involving professionals who work with projects, construction maintenance and mix proportioning of repair mortars. In the present work, a study is presented on the benefits that the ethylene vinyl acetate copolymer (EVA) and acrylate polymers can provide in the mix proportioning of a repair mortar with respect to compressive, tensile and direct-shear bond strength. The results indicated that the increase in bond strength and the reduction in the influence of the deficiency in Curing conditioning are the main contributions offered by the polymers studied here. (C) 2009 Elsevier, Ltd. All rights reserved.
Resumo:
Adhesive mortars are widely used to set porcelain stoneware tiles on buildings because their bond strength and flexibility properties increase the cladding serviceability. However, their long-term performance is not well understood, mainly the degradation of the polymeric matrix. The influence of moisture content on the flexibility of six adhesive mortars is investigated, based on standard EN 12002. Four of them have defined formulations and the other two are commercial and are widely used to set porcelain stoneware tiles on building facades in Brazil. The results show that moisture content above 6% is sufficient to reduce 50% of the mortar deformability, but that the drying process allows it to recover to a value similar to that prior to saturation; a logarithmic function best fits the correlation between moisture content and flexibility; water immersion increases matrix rigidity. It is suggested that standards should consider flexibility tests on both dried and wet samples as a requirement for polymer-modified mortars. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene/vinyl acetate (EVA) copolymer. as latex or redispersable powder, is added to mortars and concrete to improve the fracture toughness, impermeability and bond strength to various substrates. The physical and chemical interactions were already proved after one day of hydration but during the first hour just the physical interaction was identified and some evidences of a chemical interaction. The aim of this paper was to evaluate the chemical interaction between EVA and Portland cement during the first hours of hydration in the thermogravimetric analysis. The results confirmed that the EVA hydrolyses in pH alkaline and consumes calcium ions from the solution, forming an organic salt (calcium acetate). reducing the calcium hydroxide content. And, its interaction occurred in the first 15 min of hydration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The purposes of this study were to evaluate in vitro the influence of different frequencies of Er:YAG laser on the human dentin caries removal capacity. Thirty fragments obtained from third molars were randomly assigned into three groups (n = 10) according to the laser frequency used: 4, 6, and 10 Hz. The caries lesion (+/-1 mm deep) was induced before the irradiation by S. mutans cultures for 6 weeks. The specimens of all groups were irradiated with 200 mJ of energy in noncontact and focused mode under constant refrigeration (water flow: 2.5 mL/min). Quantitative analysis of the caries removal was performed by DIAGNOdent (TM) and the Axion Vision (TM) software. Qualitative analysis was performed by Scanning electron microscope (SEM) and light microscope (LM). Data were analyzed by ANOVA and Fishers` tests. The DIAGNOdent (TM) revealed that the caries removal was similar with 4 and 6 Hz and was superior with 10 Hz (P < 0.05). The analysis with Axion Vision (TM) software revealed that the caries removal was similar with 6 and 10 Hz and the 4 Hz group promoted the lowest caries removal. Through SEM morphologic analysis, some specimens irradiated with 4 Hz presented, under the demineralized dentin, a disorganized collagenous matrix. The LM images revealed that all frequencies used promoted irregular caries removal, being observed over preparations with 6 and 10 Hz. It can be concluded that the increase of Er:YAG laser frequency provided a higher dentin caries removal without selectivity to the disorganized dentin. Microsc. Res. Tech. 74:281-286, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Objective: To investigate a proposed model in which manipulative therapy produces a treatment-specific initial hypoalgesic and sympathoexcitatory effect by activating a descending pain inhibitory system. The a priori hypothesis tested was that manipulative therapy produces mechanical hypoalgesia and sympatho-excitation beyond that produced by placebo or control. Furthermore, these effects would be correlated, thus supporting the proposed model. Design: A randomized, double-blind, placebo-controlled, repeated-measures study of the initial effect of treatment. Setting: Clinical neurophysiology laboratory. Subjects: Twenty-four subjects (13 women and 11 men; mean age, 49 yr) with chronic lateral epicondylalgia (average duration, 6.2 months). Intervention: Cervical spine lateral glide oscillatory manipulation, placebo and control. Outcome Measures: Pressure pain threshold, thermal pain threshold, pain-free grip strength test, upper limb tension test 2b, skin conductance, pileous and glabrous skin temperature and blood flux. Results: Treatment produced hypoalgesic and sympathoexcitatory changes significantly grater than those of placebo and control (p < .03). Confirmatory factor-analysis modeling, which was performed on the pain-related measures and the indicators of sympathetic nervous system function, demonstrated a significant correlation (r = .82) between the latencies of manipulation-induced hypoalgesia and sympathoexcitation. The Lagrange Multiplier test and Wald test indicated that the two latent factors parsimoniously and appropriately represented their observed variables. Conclusions: Manual therapy produces a treatment-specific initial hypoalgesic and sympathoexcitatory effect beyond that of placebo or control. The strong correlation between hypoalgesic and sympathoexcitatory effects suggests that a central control mechanism might be activated by manipulative therapy.
Resumo:
This study evaluated the effects of a micro cycle of overload training (1st-8th day) on metabolic and hormonal responses in male runners with or without carbohydrate supplementation and investigated the cumulative effects of this period on a session of intermittent high-intensity running and maximum-performance-test (9th day). The participants were 24 male runners divided into two groups, receiving 61% of their energy intake as CHO (carbohydrate-group) and 54% in the control-group (CON). The testosterone was higher for the CHO than the CON group after the overload training (694.0 +/- A 54.6 vs. CON 610.8 +/- A 47.9 pmol/l). On the ninth day participants performed 10 x 800 m at mean 3 km velocity. An all-out 1000 m running was performed before and after the 10 x 800 m. Before, during, and after this protocol, the runners received solution containing CHO or the CON equivalent. The performance on 800 m series did not differ in either group between the first and last series of 800 m, but for the all-out 1000 m test the performance decrement was lower for CHO group (5.3 +/- A 1.0 vs. 10.6 +/- A 1.3%). The cortisol concentrations were lower in the CHO group in relation to CON group (22.4 +/- A 0.9 vs. 27.6 +/- A 1.4 pmol/l) and the IGF1/IGFBP3 ratio increased 12.7% in the CHO group. During recovery, blood glucose concentrations remained higher in the CHO group in comparison with the CON group. It was concluded that CHO supplementation possibly attenuated the suppression of the hypothalamic-pituitary-gonadal axis and resulted in less catabolic stress, and thus improved running performance.
Resumo:
Taking into account that atherosclerosis is a focal disease and high levels of plasma cholesterol are closely correlated with its pathogenesis, it is a challenge to explain how equal concentrations of cholesterol bathing the endothelium can produce local, rather than global, effects on arteries. The focal distribution of atherosclerotic lesions has been considered to be dependent, at least in part, on hydrodynamic factors. The present study was carried out to further test the hypothesis that these forces are an important localizing factor in rats feeding a hypercholesterolaemic diet and submitted to infra-diaphragmatic aortic constriction. These animals develop a normotensive prestenotic region with laminar blood flow that serves as control for a normotensive poststenotic region with turbulent blood flow. Our findings clearly demonstrated that the combination of turbulent blood flow and low wall shear stress (WSS) in the presence of hypercholesterolaemia and oxidative stress creates conditions to the formation of focally distributed incipient atherosclerotic lesions observed in the poststenotic segment. In contrast, only diffuse fatty streaks could be observed in the normotensive prestenotic segment with laminar blood flow and normal WSS in the presence of hypercholesterolaemia and oxidative stress. Although haemodynamic forces are not by themselves responsible for the pathogenesis of atherosclerosis, they prime the local vascular wall in which the lesion develop. Further studies are required to establish how haemodynamic forces are detected and transduced into chemical signalling by the cells of the artery wall and then converted into pathophysiologically relevant phenotypic changes.
Resumo:
The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer`s instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p < 0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.
Resumo:
Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Although the cariostatic effects of CO(2) laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 mu m CO(2) laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2-2.5 J/cm(2); G3-4.0 J/cm(2); G4-5.0 J/cm(2); and G5-6.0 J/cm(2). Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5 degrees C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm(2) were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm(2), laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm(2) could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.
Resumo:
Purpose: The objective of this in vitro study was to compare the degree of microleakage of composite restorations performed by lasers and conventional drills associated with two adhesive systems. Materials and Methods: Sixty bovine teeth were divided into 6 groups (n = 10). The preparations were performed in groups 1 and 2 with a high-speed drill (HID), in groups 3 and 5 with Er:YAG laser, and in groups 4 and 6 with Er,Cr:YSGG laser. The specimens were restored with resin composite associated with an etch-and-rinse two-step adhesive system (Single Bond 2 [SB]) (groups 1, 3, 4) and a self-etching adhesive (One-Up Bond F [OB]) (groups 2, 5, 6). After storage, the specimens were polished, thermocycled, immersed in 50% silver nitrate tracer solution, and then sectioned longitudinally. The specimens were placed under a stereomicroscope (25X) and digital images were obtained. These were evaluated by three blinded evaluators who assigned a microleakage score (0 to 3). The original data were submitted to Kruskal-Wallis and Mann-Whitney statistical tests. Results: The occlusal/enamel margins demonstrated no differences in microleakage for all treatments (p > 0.05). The gingival/dentin margins presented similar microleakage in cavities prepared with Er:YAG, Er,Cr:YSGG, and HD using the etch-and-rinse two-step adhesive system (SB) (p > 0.05); otherwise, both Er:YAG and Er,Cr:YSGG lasers demonstrated lower microleakage scores with OB than SB adhesive (p < 0.05). Conclusion: The microleakage score at gingival margins is dependent on the interaction of the hard tissue removal tool and the adhesive system used. The self-etching adhesive system had a lower microleakage score at dentin margins for cavities prepared with Er:YAG and Er,Cr:YSGG than the etch-and-rinse two-step adhesive system.
Resumo:
The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 mu m diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm(2) with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm(2) with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.