974 resultados para Pseudo-Philoxenus.
Resumo:
This paper investigates the mechanism of nanoscale fatigue of functionally graded TiN/TiNi films using nano-impact and multiple-loading-cycle nanoindentation tests. The functionally graded films were deposited on silicon substrate, in which TiNi films maintain shape memory and pseudo elastic behavior, while a modified TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to comprehend the localized film performance and failure modes of the functionally graded film using NanoTestTM equipped with Berkovich and conical indenter between 100 μN to 500 mN loads. The loading mechanism and load history are critical to define film failure modes (i.e. backward depth deviation) including the shape memory effect of the functionally graded layer. The results are sensitive to the applied load, loading type (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it is concluded that the shape of the nanoindenter is critical in inducing the localized indentation stress and film failure, including shape recovery at the lower load range. Elastic-plastic finite element (FE) simulation during nanoindentation loading indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure. A standalone, molecular dynamics simulation was performed with the help of a long range potential energy function to simulate the tensile test of TiN nanowire with two different aspect ratios to investigate the theory of its failure mechanism.
Resumo:
The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of solution pH, initial concentration and contact time onto olive stone (OS) biomass has been investigated. The main objectives of the current study are to: (i) study the chemistry and the mechanism of ARS and MB biosorption onto olive stone and the type of OS–ARS, MB interactions occurring, (ii) study the biosorption equilibrium and kinetic experimental data required for the design and operation of column reactors. Equilibrium biosorption isotherms and kinetics were also examined. Experimental equilibrium data were fitted to four different isotherms by non-linear regression method, however, the biosorption experimental data for ARS and MB dyes were well interpreted by the Temkin and Langmuir isotherms, respectively. The maximum monolayer adsorption capacity for ARS and MB dyes were 109.0 and 102.6 mg/g, respectively. The kinetic data of the two dyes could be better described by the pseudo second-order model. The data showed that olive stone can be effectively used for removing dyes from wastewater.
Resumo:
Mary Magdalene has endured over the centuries as a powerful icon for the redemption of the so-called sins of the flesh. In arguing that her appeal to writers was experienced no more keenly than in nineteenth-century France, this article reflects on the political, ideological and gender assumptions that are woven into the Madeleine narrative of redemption. It goes on to propose that, with the rise of the naturalist novel, relying on pseudo-scientific theories of pre-determination, the Madeleine myth is radically rewritten in Zola’s Madeleine Férat, an often neglected novel in which the Calvinist doctrine of original sin and predestination not only challenges the very notion of redemption from sexual waywardness, but inflects some of the defining principles of naturalism.
Resumo:
This article examines the osseous technologies that can be created from animal skeletons. 'Tool' status is accorded to a skeletal element or fragment that has been modified subsequent to its isolation from the carcass. Such anthropic adaptation may be deliberate (e.g., through manufacture) and/or appear as a result of utilization, and is granted in instances where these details cannot otherwise be ascribed to alternative nonanthropic causes. Implements can display a combination of traces from both human and natural sources and as such the study of them involves both zooarchaeological (i.e., via animal ecology, hunting, and butchery) and technological analysis.... As an exemplar of this, the following discussion will present some of the similarities and differences that exist between osseous and lithic raw materials and tool-blank production, and will situate both in an operational sequence of animal procurement and processing. It will then give an account of principal manufacturing techniques, methods for establishing tool function, and the phenomenon of 'pseudo tools'. © 2008 Copyright © 2008 Elsevier Inc.
Resumo:
The ground state potential energy surface for CO chemisorption across Pd{110} has been calculated using density functional theory with gradient corrections at monolayer coverage. The most stable site corresponds well with the experimental adsorption heat, and it is found that the strength of binding to sites is in the following order: pseudo-short-bridge>atop>long-bridge>hollow. Pathways and transition states for CO surface diffusion, involving a correlation between translation and orientation, are proposed and discussed. (C) 1997 American Institute of Physics.
Resumo:
Adsorption of 0.5 monolayer of N adatoms on W{100} results in a sharp (root 2 X root 2)R45 degrees LEED pattern. The only previous quantitative LEED study of this system gave a simple overlayer model with a Pendry R-factor of 0.55. An exhaustive search has been made of possible structures, including a novel vacancy reconstruction, displacive reconstructions and underlayer adsorption. From this work a new overlayer structure is derived with an R(p) value of 0.22, displaying a considerable buckling of 0.27 +/- 0.05 Angstrom within the second W layer and consequently involving large changes in the interlayer spacings of the surface. The N adatom is pseudo-five-fold coordinated to the W surface, bonding to a second-layer W atom with a nearest-neighbour bond length of 2.13 Angstrom and with the four next-nearest-neighbour W atoms in the surface plane at 2.27 Angstrom. The structure does not resolve the work function anomaly observed on this surface.
Resumo:
In this paper, the processing and characterization of Polyamide 6 (PA6) / graphite nanoplatelets
(GNPs) composites is reported. PA6/GNPs composites were prepared by melt-mixing using an
industrial, co-rotating, intermeshing, twin-screw extruder. A bespoke screw configuration was used
that was designed in-house to enhance nanoparticle dispersion into a polymer matrix. The effects of
GNPs type (xGnP® M-5 and xGnP® C-500), GNPs content, and extruder screw speed on the bulk
properties of the PA6/GNPs nanocomposites were investigated. Results show a considerable
improvement in the thermal and mechanical properties of PA6/GNPs composites, as compared with
the unfilled PA6 polymer. An increase in crystallinity (%Xc) with increasing GNPs content, and a
change in shape of the crystallization exotherms (broadening) and melting endotherms, both suggest a
change in the crystal type and perfection. An increase in tensile modulus of as much as 376% and
412% was observed for PA6/M-5 xGnP® and PA6/C-500 xGnP® composites, respectively, at filler
contents of 20wt%. The enhancement of Young’s modulus and yield stress can be attributed to the
reinforcing effect of GNPs and their uniform dispersion in the PA6 matrix. The rheological response
of the composite resembles that of a ‘pseudo-solid’, rather than a molten liquid, and analysis of the
rheological data indicates that a percolation threshold was reached at GNPs contents of between 10–
15wt%. The electrical conductivity of the composite also increased with increasing GNPs content,
with an addition of 15wt% GNPs resulting in a 6 order-of-magnitude increase in conductivity. The
electrical percolation thresholds of all composites were between 10–15wt%.
Resumo:
In this paper, the processing and characterization of Polyamide 6 (PA6) nanocomposites containing graphite nanoplatelets (GNPs) is reported. PA6 nanocomposites were prepared by melt-mixing using an industrial, co-rotating, intermeshing, twin-screw extruder. A bespoke screw configuration was used that was designed in-house to enhance nanoparticle dispersion into a polymer matrix. The effects of nano-filler type (xGnPTM M-5 and xGnPTM C-500), nano-filler content, and extruder screw speed on the bulk properties of the PA6 nanocomposites were investigated. The crystalline structures of PA6 nanocomposites are related to thermal treatment, stress history and the presence of moisture and nanofillers. DSC, Raman and XRD studies show an increase in crystallinity with increasing GNP content and a phase transformation between α-form to γ-form crystals as a result of the heterophase nucleation effect. The effect of uniaxial stretching on PA6 nanocomposites was investigated by drawing specimens heated at temperatures below the melting temperature. DSC and Raman studies on the drawn samples show an increase in yield stress as the GNP content increases due to the strain induced crystallization and γ—β transition during stretching. The rheological response of the nanocomposites resemble that of a ‘pseudo-solid’, rather than a molten liquid, and analysis of the rheological data indicates that a percolation threshold was reached at GNP contents of between 10–15wt%. An increase in tensile modulus of as much as 412% was observed for PA6/C-500 xGnPTM composites, at a filler content of 20wt%. The enhancement of Young’s modulus and yield stress can be attributed to the reinforcing effect of GNPs and their uniform dispersion in the PA6 matrix. The electrical conductivity of the composite also increased with increasing GNP content, with an addition of 15wt% GNP resulting in a 6 order-of-magnitude increase in conductivity. The effects of uniaxial-drawing and the inclusion of multiple nano-filler varieties on the electrical and mechanical properties are currently under investigation.
Resumo:
The combined effect of special relativity and electron degeneracy on Langmuir waves is analyzed by utilizing a rigorous fully relativistic hydrodynamic model. Assuming a traveling wave solution form, a set of conservation laws is identified, together with a pseudo-potential function depending on the relativistic parameter p<inf>F</inf>/(m c) (where p<inf>F</inf> is the Fermi momentum, m is the mass of the charge carriers and c the speed of light), as well as on the amplitude of the electrostatic energy perturbation.
Resumo:
In this work, olive stone (OS) was utilized to investigate its capacity as biosorbent for methylene blue (MB) and Cr(III), which are usually present in textile industry effluents. Equilibrium and kinetic experiments were performed in batch experiments. The biosorption process followed pseudo-second-order kinetics. The equilibrium data were fitted with several models, but Langmuir and Sips models best reproduced the experimental results. Maximum biosorption capacities were 3.296 mg/g (0.0116 mmol/g) and 4.990 mg/g (0.0960 mmol/g) for MB and Cr(III), respectively. Several operation variables, such as
biosorbent mass, flow rate, and initial concentration on the removal of dye and metal, were evaluated in column system. The removal efficiency improved as OS mass increased and decreased when flow rate and initial concentration increased. Also, MB uptake was substantially decreased by increasing the initial concentration of Cr(III), ranging from 6.09 to 2.75 mg/g. These results show that the presence of Cr(III) significantly modifies the biosorption capacity of MB by the OS. These results suggest that OS is a potential low-cost food industry waste for textile industry wastewater treatment.
Resumo:
The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems and kinetics in batch mode were also examined. The kinetic data of the two dyes were better described by the pseudo second-order model. At low concentration, ARS dye appeared to follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent particle and occupies the biosorption sites forming a monodentate complex and then the ARS dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites.
Resumo:
A companion paper described the partial-interaction localised properties that require the development of pseudo properties. If the quantification through experimental testing of these pseudo properties could be removed by the use of mechanics-based models, which is the subject of this paper, then this would: (a) substantially reduce the cost of developing new reinforced concrete products by reducing the amount of testing; (b) increase the accuracy of designing existing and novel reinforced concrete members and structures, bearing in mind that experimentally derived pseudo properties are only applicable within the range of the testing from which they were derived; and (c) reduce the cost and increase the accuracy of developing reinforced concrete design rules. This paper deals with the development of pseudo properties and behaviours directly through mechanics, as opposed to experimental testing, and their incorporation into member global simulations. It also addresses the need for a fundamental shift to displacement-based analyses as opposed to strain-based analyses.
Resumo:
Reinforced concrete members are extremely complex under loading because of localised deformations in the concrete (cracks, sliding planes) and between the reinforcement and concrete (slip). An ideal model for simulating behaviour of reinforced concrete members should incorporate both global behaviour and the localised behaviours that are seen and measured in practice; these localised behaviours directly affect the global behaviour. Most commonly used models do not directly simulate these localised behaviours that can be seen or measured in real members; instead, they overcome these limitations by using empirically or semi-empirically derived strain-based pseudo properties such as the use of effective flexural rigidities for deflection; plastic hinge lengths for strength and ductility; and energy-based approaches for both concrete softening in compression and concrete softening after tensile cracking to allow for tension stiffening. Most reinforced concrete member experimental testing is associated with deriving these pseudo properties for use in design and analysis, and this component of development is thus costly. The aim of the present research is to reduce this cost substantially. In this paper, localised material behaviours and the mechanisms they induce are described. Their incorporation into reinforced concrete member behaviour without the need for empirically derived pseudo properties is described in a companion paper.
Resumo:
We present optical and near-infrared observations of the type IIb supernova (SN) 2011fu from a few days to similar to 300 d after explosion. The SN presents a double-peaked light curve (LC) similar to that of SN 1993J, although more luminous and with a longer cooling phase after the primary peak. The spectral evolution is also similar to SN 1993J's, with hydrogen dominating the spectra to similar to 40 d, then helium gaining strength, and nebular emission lines appearing from similar to 60 d post-explosion. The velocities derived from the P-Cygni absorptions are overall similar to those of other type IIb SNe. We have found a strong similarity between the oxygen and magnesium line profiles at late times, which suggests that these lines are forming at the same location within the ejecta. The hydrodynamical modelling of the pseudo-bolometric LC and the observed photospheric velocities suggest that SN 2011fu was the explosion of an extended star (R similar to 450 R-circle dot), in which 1.3 x 10(51) erg of kinetic energy were released and 0.15 M-circle dot of Ni-56 were synthesized. In addition, a better reproduction of the observed early pseudo-bolometric LC is achieved if a more massive H-rich envelope than for other type IIb SNe is considered (0.3 M-circle dot). The hydrodynamical modelling of the LC and the comparison of our late-time spectra with nebular spectral models for type IIb SNe, point to a progenitor for SN 2011fu with a Zero Age Main Sequence (ZAMS) mass of 13-18 M-circle dot.
Resumo:
We investigate the potential use of line ratio diagnostics to evaluate electron temperature in either helium or helium seeded argon plasmas. Plasmas are produced in a helicon plasma source. A rf compensated Langmuir probe is used to measure both the electron temperature and plasma density while a spectrometer is used to measure He I line intensities from the plasma. For all plasma densities where the electron temperature remains at 5 ± 1 eV, three He line ratios are measured. Each experimental ratio is compared with the prediction of three different collisional radiative models. One of these models makes uses of recent R-matrix with pseudo-states calculations for collisional rate coefficients. A discussion related to the different observations and model predictions is presented.