934 resultados para Prototipazione rapida additive manufacturing conformità
Resumo:
Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.
Resumo:
This paper presents a new approach to speech enhancement from single-channel measurements involving both noise and channel distortion (i.e., convolutional noise), and demonstrates its applications for robust speech recognition and for improving noisy speech quality. The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise for speech estimation. Third, we present an iterative algorithm which updates the noise and channel estimates of the corpus data model. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement.
Resumo:
This paper presents a new approach to single-channel speech enhancement involving both noise and channel distortion (i.e., convolutional noise). The approach is based on finding longest matching segments (LMS) from a corpus of clean, wideband speech. The approach adds three novel developments to our previous LMS research. First, we address the problem of channel distortion as well as additive noise. Second, we present an improved method for modeling noise. Third, we present an iterative algorithm for improved speech estimates. In experiments using speech recognition as a test with the Aurora 4 database, the use of our enhancement approach as a preprocessor for feature extraction significantly improved the performance of a baseline recognition system. In another comparison against conventional enhancement algorithms, both the PESQ and the segmental SNR ratings of the LMS algorithm were superior to the other methods for noisy speech enhancement. Index Terms: corpus-based speech model, longest matching segment, speech enhancement, speech recognition
Resumo:
A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%.
Resumo:
The impact of buckling containment features on the stability of thin-gauge fuselage, metallic stiffened panels has previously been demonstrated. With the continuing developments in manufacturing technology, such as welding, extrusion, machining, and additive layer manufacture, understanding the benefits of additional panel design features on heavier applications, such as wing panels, is timely. This compression testing of thick-gauge panels with and without buckling containment features has been undertaken to verify buckling and collapse behaviors and validate sizing methods. The experimental results demonstrated individual panel mass savings on the order of 9%, and wing cover design studies demonstrated mass savings on the order of 4 to 13%, dependent on aircraft size and material choice.
Resumo:
Seeds are traditionally considered as common or even public goods, their traits as ‘products of nature’. They are also essential to biodiversity, food security and food sovereignty. However, a suite of techno-legal interventions has legislated the enclosure of seeds: seed patents, plant variety protections, and stewardship agreements. These instruments create and protect private proprietary interests over plant material and point to the interface between seeds, capitalism, and law. In the following article, we consider the latest innovations, the bulk of which have been directed toward genetically disabling the reproductive capacities of seeds (terminator technology) or tying these capacities to outputs (‘round-up necessary’). In both instances, scarcity moves from artificial to real.
For the agro-industrial complex, the innovations are perfectly rational as they can simultaneously control supply and demand. For those outside the complex, however, the consequences are potentially ruinous. The practices of seed-saving and exchange no longer are feasible, even covertly. Contemporary genetic controls have upped the ante, by either disabling the reproductive capacity of seeds or, through cross-pollination and outcrossing, facilitating the autonomous spread of the genetic modifications that are importantly still traceable, identifiable and therefore capable of legal protection. In both instances, genuine scarcity becomes the new standard as private interests dominate what was a public sphere.
Resumo:
The speed of manufacturing processes today depends on a trade-off between the physical processes of production, the wider system that allows these processes to operate and the co-ordination of a supply chain in the pursuit of meeting customer needs. Could the speed of this activity be doubled? This paper explores this hypothetical question, starting with examination of a diverse set of case studies spanning the activities of manufacturing. This reveals that the constraints on increasing manufacturing speed have some common themes, and several of these are examined in more detail, to identify absolute limits to performance. The physical processes of production are constrained by factors such as machine stiffness, actuator acceleration, heat transfer and the delivery of fluids, and for each of these, a simplified model is used to analyse the gap between current and limiting performance. The wider systems of production require the co-ordination of resources and push at the limits of human biophysical and cognitive limits. Evidence about these is explored and related to current practice. Out of this discussion, five promising innovations are explored to show examples of how manufacturing speed is increasing—with line arrays of point actuators, parallel tools, tailored application of precision, hybridisation and task taxonomies. The paper addresses a broad question which could be pursued by a wider community and in greater depth, but even this first examination suggests the possibility of unanticipated innovations in current manufacturing practices.
Resumo:
This paper presents an approach to develop an intelligent digital mock-up (DMU) through integration of design and manufacturing disciplines to enable a better understanding of assembly related issues during design evolution. The intelligent DMU will contain tolerance information related to manufacturing capabilities so it can be used as a source for assembly simulations of realistic models to support the manufacturing decision making process within the design domain related to tolerance build ups. A literature review of the contributing research areas is presented, from which identification of the need for an intelligent DMU has been developed. The proposed methodology including the applications of cellular modelling and potential features of the intelligent DMU are presented and explained. Finally a conclusion examines the work to date and the future work to achieve an intelligent DMU.
Resumo:
Virtual Reality techniques are relatively new, having experienced significant development only during the last few years, in accordance with the progress achieved by computer science and hardware and software technologies. The study of such advanced design systems has led to the realization of an immersive environment in which new procedures for the evaluation of product prototypes, ergonomics and manufacturing operations have been simulated. The application of the environment realized to robotics, ergonomics, plant simulations and maintainability verifications has allowed us to highlight the advantages offered by a design methodology: the possibility of working on the industrial product in the first phase of conception; of placing the designer in front of the virtual reproduction of the product in a realistic way; and of interacting with the same concept. The aim of this book is to present an updated vision of VM through different aspects. We will describe the trends and results achieved in the automotive, aerospace and railway fields, in terms of the Digital Product Creation Process to design the product and the manufacturing process.
Resumo:
Nowadays, the realization of the Virtual Factory (VF) is the strategic goal of many manufacturing enterprises for the coming years. The industrial scenario is characterized by the dynamics of innovations increment and the product life cycle became shorter. Furthermore products and the corresponding manufacturing processes get more and more complex. Therefore, companies need new methods for the planning of manufacturing systems.
To date, the efforts have focused on the creation of an integrated environment to design and manage the manufacturing process of a new product. The future goal is to integrate Virtual Reality (VR) tools into the Product Lifecycle Management of the manufacturing industries.
In order to realize this goal the authors have conducted a study to perform VF simulation steps for a supplier of Industrial Automation Systems and have provided a structured approach focusing on interaction between simulation software and VR hardware tools in order to simulate both robotic and
manual work cells.
The first results of the study in progress have been carried out in the VR Laboratory of the Competence Regional Centre for the qualification of the Transportation Systems that has been founded by Campania Region.