879 resultados para Protocolo OAI
Resumo:
SCOPUS: ar.j
Resumo:
SCOPUS: ar.j
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
SCOPUS: cp.j
Resumo:
SCOPUS: ar.j
Resumo:
SCOPUS: ar.j
Resumo:
SCOPUS: ar.j
Resumo:
Cryopreservation of ovarian tissue is now offered as an experimental procedure to preserve the fertility of young patients with a high risk for premature ovarian failure resulting from cancer therapy. This is the only available option to preserve the fertility of prepubertal patients treated with gonadotoxic chemotherapy. At present, thousands of patients all over the world have undergone this procedure with the hope of later restoring their fertility. Although the efficiency of the transplantation of cryopreserved ovarian tissue to restore ovarian function has been established, reports of pregnancy are still very scarce. Here, we describe the second published full-term spontaneous pregnancy after an orthotopic and heterotopic transplantation of cryopreserved ovarian tissue in a 31-year-old woman previously treated by conditioning therapy for bone marrow transplantation for Hodgkin's disease. This birth gives compelling evidence for the graft origin of the gamete and confirms the efficacy of ovarian tissue transplantation in restoring human natural fertility after oncological treatment. This case report stresses the importance of proposing the ovarian tissue cryopreservation procedure to all young patients who require potentially sterilizing treatment, with all alternative options to preserve fertility being duly taken into consideration.
Resumo:
Insulin-like growth factor-I (IGF-I) is involved in the regulation of ovarian follicular development and has been shown to potentiate the FSH responsiveness of granulosa cells from preantral follicles. The aim of the present study was to investigate the effect of IGF-I during preantral follicular culture on steroidogenesis, subsequent oocyte maturation, fertilization, and embryo development in mice. Preantral follicles were isolated mechanically and cultured for 12 days in a simplified culture medium supplemented with 1% fetal calf serum, recombinant human FSH, transferrin, and selenium. In these conditions, follicles were able to grow and produce oocytes that could be matured and fertilized. The first experiment analyzed the effect of different concentrations of IGF-I (0, 10, 50, or 100 ng/ml) added to the culture medium on the follicular survival, steroidogenesis, and the oocyte maturation process. The presence of IGF-I during follicular growth increased the secretion of estradiol but had no effect on the subsequent oocyte survival and maturation rates. In the second experiment, IGF-I (0 or 50 ng/ml) was added to the culture medium during follicular growth, oocyte maturation, or both, and subsequent oocyte fertilization and embryo development rates were evaluated. Oocyte fertilization rates were comparable in the presence or absence of IGF-I. However, the blastocyst development rate was enhanced after follicular culture in the presence of IGF-I. Moreover, the total cell number of the blastocysts observed after differential labeling staining was also higher when follicles were cultured or matured in the presence of IGF-I.
Resumo:
Background: The use of mechanical and enzymatic techniques to isolate preantral follicles before in-vitro culture has been previously described. The aim of this study was to assess the effect of the isolation procedure of mouse preantral follicles on their subsequent development in vitro. Methods: Follicles were isolated either mechanically or enzymatically and cultured using an individual non-spherical culture system. Follicular development and steroidogenesis, oocyte in-vitro maturation and embryo development were assessed for both groups. Results: After 12 days of culture, follicles isolated mechanically had a higher survival rate but a lower antral-like cavity formation rate than follicles isolated enzymatically. Enzymatic follicle isolation was associated with a higher production of testosterone and estradiol compared with mechanical isolation. A stronger phosphatase alkaline reaction was observed after enzymatic isolation, suggesting that follicles isolated enzymatically had more theca cells than those isolated mechanically. However, both isolation techniques resulted in similar oocyte maturation and embryo development rates. Conclusions: Enzymatic follicular isolation did not affect theca cell development. Follicular steroidogenesis was enhanced after enzymatic isolation but the developmental capacity of oocytes was comparable to that obtained after mechanical isolation.