841 resultados para Protein-energy supplementation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of benthic marine invertebrates have a complex life cycle, during which the pelagic larvae select a suitable substrate, attach to it, and then metamorphose into benthic adults. Anthropogenic ocean acidification (OA) is postulated to affect larval metamorphic success through an altered protein expression pattern (proteome structure) and post-translational modifications. To test this hypothesis, larvae of an economically and ecologically important barnacle species Balanus amphitrite, were cultured from nauplius to the cyprid stage in the present (control) and in the projected elevated concentrations of CO2 for the year 2100 (the OA treatment). Cyprid response to OA was analyzed at the total proteome level as well as two protein post-translational modification (phosphorylation and glycosylation) levels using a 2-DE based proteomic approach. The cyprid proteome showed OA-driven changes. Proteins that were differentially up or down regulated by OA come from three major groups, namely those related to energy-metabolism, respiration, and molecular chaperones, illustrating a potential strategy that the barnacle larvae may employ to tolerate OA stress. The differentially expressed proteins were tentatively identified as OA-responsive, effectively creating unique protein expression signatures for OA scenario of 2100. This study showed the promise of using a sentinel and non-model species to examine the impact of OA at the proteome level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification impacts fish and other marine species through increased seawater PCO2 levels (hypercapnia). Knowledge of the physiological mechanisms mediating effects in various tissues of fish is incomplete. Here we tested the effects of extracellular hypercapnia and acidosis on energy metabolism of gill and liver cells of Atlantic cod. Exposure media mimicked blood conditions in vivo, either during normo- or hypercapnia and at control or acidic extracellular pH (pHe). We determined metabolic rate and energy expenditure for protein biosynthesis, Na+/K+-ATPase and H+-ATPase and considered nutrition status by measurements of metabolic rate and protein biosynthesis in media with and without free amino acids (FAA). Addition of FAA stimulated hepatic but not branchial oxygen consumption. Normo- and hypercapnic acidosis as well as hypercapnia at control pHe depressed metabolic stimulation of hepatocytes. In gill cells, acidosis depressed respiration independent of PCO2 and FAA levels. For both cell types, depressed respiration was not correlated with the same reduction in energy allocated to protein biosynthesis or Na+/K+-ATPase. Hepatic energy expenditure for protein synthesis and Na+/K+- ATPase was even elevated at acidic compared to control pHe suggesting increased costs for ion regulation and cel- lular reorganization. Hypercapnia at control pHe strongly reduced oxygen demand of branchial Na+/K+-ATPase with a similar trend for H+-ATPase. We conclude that extracellular acidosis triggers metabolic depression in gill and metabolically stimulated liver cells. Additionally, hypercapnia itself seems to limit capacities for metabolic usage of amino acids in liver cells while it decreases the use and costs of ion regulatory ATPases in gill cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine organisms have to cope with increasing CO2 partial pressures and decreasing pH in the oceans. We elucidated the impacts of an 8-week acclimation period to four seawater pCO2 treatments (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm) on mantle gene expression patterns in the blue mussel Mytilus edulis from the Baltic Sea. Based on the M. edulis mantle tissue transcriptome, the expression of several genes involved in metabolism, calcification and stress responses was assessed in the outer (marginal and pallial zone) and the inner mantle tissues (central zone) using quantitative real-time PCR. The expression of genes involved in energy and protein metabolism (F-ATPase, hexokinase and elongation factor alpha) was strongly affected by acclimation to moderately elevated CO2 partial pressures. Expression of a chitinase, potentially important for the calcification process, was strongly depressed (maximum ninefold), correlating with a linear decrease in shell growth observed in the experimental animals. Interestingly, shell matrix protein candidate genes were less affected by CO2 in both tissues. A compensatory process toward enhanced shell protection is indicated by a massive increase in the expression of tyrosinase, a gene involved in periostracum formation (maximum 220-fold). Using correlation matrices and a force-directed layout network graph, we were able to uncover possible underlying regulatory networks and the connections between different pathways, thereby providing a molecular basis of observed changes in animal physiology in response to ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seals must manage their energy reserves carefully while they fast on land to ensure that they go to sea with sufficient fuel to sustain them until they find food. Glucocorticoids (GCs) have been implicated in the control of fuel metabolism and termination of fasting in pinnipeds. Here we tested the hypothesis that dexamethasone, an artificial GC, increases fat and protein catabolism, and induces departure from the breeding colony in wild, fasting grey seal pups. A single intramuscular dose of dexamethasone completely suppressed cortisol production for 24–72 h, demonstrating activation of GC receptors. In experiment 1, we compared the effects of a single dose of dexamethasone or saline administered 10 days after weaning on fasting mass and body composition changes, cortisol, blood urea nitrogen (BUN) and glucose levels, and timing of departure from the colony. In experiment 2, we investigated the effects of dexamethasone on short-term (5 days) changes in mass loss, body composition and BUN levels. In experiment 1, dexamethasone induced a short-lived increase in mass loss, but there was no difference in timing of departure between dexamethasone- and saline-treated pups (N=10). In experiment 2, dexamethasone increased protein and water loss and prevented a decrease in BUN levels (N=11). Our data suggest changes in cortisol contribute to regulation of protein catabolism in fasting seal pups, irrespective of the sex of the animal, but do not terminate fasting. By affecting the rate of protein depletion, lasting changes in cortisol levels could influence the amount of time seal pups have to find food, and thus may have important consequences for their survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objectif général des travaux présentes dans cette thèse de doctorat était d’établir la relation entre l’alimentation et la composition du lait des vaches laitières, en mettant l’emphase sur les teneurs en matières grasses (TMG), sur l’urée du lait et sur l’efficience d’utilisation de l’azote. Pour la TMG, c’est principalement la relation entre cette teneur et la différence alimentaire cations-anions (DACA) qui a été investiguée. Une base de données de 2 142 troupeaux québécois a été utilisée et la relation entre la composition de la ration, incluant la DACA, et la TMG du lait a été déterminée à l’aide de régressions multiples. Il a été possible de prédire entre 32 et 66 % de la variation de la TMG du lait en fonction du stade de lactation. Malgré plusieurs interactions trouvées, une augmentation de la DACA, une supplémentation avec de l’acide palmitique et une distribution des aliments en ration totale mélangée ont eu une relation positive avec la TMG du lait, tandis qu’une augmentation de la proportion de concentrés dans la ration a eu un effet négatif. Les modèles développés ont montré l’importance de la gestion de l’alimentation sur la TMG du lait. En plus, ils ont démontré l’intérêt de considérer la DACA dans la formulation de rations chez la vache laitière. Dans une deuxième étude, la même base des données a été utilisée pour identifier les facteurs nutritionnels qui peuvent faire varier la teneur en urée du lait. Contrairement à ce qui est mentionné dans la littérature, tant des corrélations positives et que négatives entre les teneurs en urée du lait et en protéines des rations à l’intérieur des troupeaux sur une période de 36 mois ont été obtenues. Pour mieux comprendre ces relations, les résultats de performances et d’alimentation de 100 troupeaux avec des corrélations positives (r > 0,69) et de 100 troupeaux avec des corrélations négatives (r < -0,44) entre la teneur en urée du lait et en protéine brute de la ration ont été comparés. Les résultats n’ont pas montré de différences entre les deux groupes ni pour la composition de la ration, ni pour l’urée du lait. Ces résultats ne permettent pas d’identifier le meilleur contexte pour l’utilisation de la teneur en urée du lait comme un outil de gestion de l’alimentation. Ces observations soulèvent des questions sur la validité de l’utilisation des statistiques d’alimentation provenant de la base de données utilisée pour des évaluations nutritionnelles plus spécifiques. Considérant les résultats du projet précédent, le dernier projet visait à mieux comprendre les caractéristiques des fermes avec différentes efficiences d’utilisation de l’azote en utilisant des données plus fiables. Ainsi, 100 fermes laitières au Québec ont été visitées pour recueillir les données de production, de consommation d’aliments et de gestion de leur troupeau. Ces fermes ont été divisées en quatre groupes par une analyse en grappes selon leur efficience d’utilisation de l’azote. La comparaison entre les groupes a montré que les fermes dans les groupes avec une plus haute efficience d’utilisation d’azote ont une production laitière moyenne par vache plus élevée. Pour les stratégies d’alimentation, les fermes plus efficientes donnent plus d’énergie, mais moins de protéines brutes que les fermes des groupes moins efficients. Les résultats ont également montré l’importance de la prise alimentaire des vaches sur l’efficience d’utilisation de l’azote puisque les fermes des groupes avec la plus grande efficience étaient également celles avec la plus faible prise alimentaire. Aussi, les résultats n’ont pas permis d’établir clairement la relation entre la teneur en urée du lait et l’efficience de l’utilisation de l’azote. En effet, des valeurs différentes pour l’urée du lait étaient obtenues entre le groupe plus efficient et le moins efficient, mais la faible ampleur de variation de l’efficience d’utilisation de l’azote des groupes intermédiaires n’a pas permis d’observer de différences pour l’urée du lait. Finalement, outre une réduction des risques de pollution, les fermes des groupes plus efficaces pour l’utilisation de l’azote étaient également celles avec la marge sur les coûts d’alimentation par les vaches plus élevées. Par conséquent, il y a aussi un intérêt économique à améliorer l’efficience de l’utilisation de l’azote sur les fermes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a comprehensive study of protein-mediated membrane fusion through single-molecule fluorescence resonance energy transfer (smFRET). Membrane fusion is one of the important cellular processes by which two initially distinct lipid bilayers merge their hydrophobic cores, resulting in one interconnected structure. For example, exocytosis, fertilization of an egg by a sperm and communication between neurons are a few among many processes that rely on some form of fusion. Proteins called soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) play a central role in fusion processes which is also regulated by many accessory proteins, such as synaptotagmin, complexin and Munc18. By a new lipid mixing method at the single-vesicle level, we are able to accurately detect different stages of SNARE-mediated membrane fusion including docking, hemi and full fusion via FRET value of single donor/acceptor vesicle pair. Through this single-vesicle lipid mixing assay, we discovered the vesicle aggregation induced by C2AB/Ca2+, the dual function of complexin, and the fusion promotion role of Munc18/SNARE-core binding mode. While this new method provides the information regarding the extent of the ensemble lipid mixing, the fusion pore opening between two vesicular cavities and the interaction between proteins cannot be detected. In order to overcome these limitations, we then developed a single-vesicle content mixing method to reveal the key factor of pore expansion by detecting the FRET change of dual-labeled DNA probes encapsulated in vesicles. Through our single-vesicle content mixing assay, we found the fusion pore expansion role of yeast SNAREs as well as neuronal SNAREs plus synaptotagmin 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infant formula is consumed by the majority of infants in the United States for at least part of the first year of life. Infant formula lacks many of the bioactive compounds that are naturally occurring in breast milk. Because of this, there has been an increased interest by the companies that manufacture infant formula to include additives that would potentially allow formula to more closely mimic breast milk activity. One such ingredient currently being added to infant formula is prebiotics. Prebiotics are non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth of specific healthful bacteria in the colon. It is speculated that prebiotics replicate the activity of breast milk oligosaccharides, which through the production of butyrate by intestinal microbiota, may interact with the Wnt/BMP pathways. The Wnt/BMP pathways regulate intestinal stem cells, which determine the growth, development and maintenance of the intestine. Therefore, the objective of this study was to explore the effects that the addition of prebiotics to formula have on the regulation of the Wnt/BMP pathways when fed to neonatal piglets, a model commonly used in the study of infant nutrition. Piglets (n=5) were randomized into sow-reared (SR), fed control formula (F), or fed formula with added prebiotics (F+P). Fructooligosaccharides (FOS) (2 g/L) and polydextrose (PDX) (2 g/L) were chosen as the prebiotics for this study, because this combination had been less studied than other combinations. Ileum and ascending colon were collected at 7 and 14 days-of-age. Dry matter content, pH, and short chain fatty acid (SCFA) content was measured. The mRNA expression of β-catenin, sFRP3, sFRP4, frizzled 6, DKK1 (Wnt pathway), gremlin (BMP pathway), TNF-a, HNF-4α and osteopontin (OPN) was measured by RT-qPCR. Piglets fed the F+P diet had greater acetate concentration and lower pH in the ileum at day 14 and in the colon at day 7 and day 14 than F piglets. Butyrate concentrations were highest in SR with F+P not differing from F in ileum at day 14 and colon at day 7 and day 14. Effects of age were seen in all genes, with the exception of OPN, sFRP-3 and sFRP-4. On day 7, no effect of diet was observed in the ileum, however, mRNA expression of DKK1 and frizzled 6 were greater in F+P than SR (p≤0.05). On day 14, gremlin expression was lower and OPN was greater in the ileum of SR piglets compared to F and F+P. Also on day 14, HNF-4α mRNA expression was greater in both ileum and colon of F+P piglets and sFRP3 mRNA expression was greater in the colon than F or SR . In summary, differences were observed between gene expression of F+P and SR piglet intestines, but the supplementation of 2 g/L scFOS and 2 g/L PDX to formula did not shift expression of genes in the Wnt/BMP pathways to be more similar to SR than F. As the Wnt/BMP pathway is known to exist in a gradient along the crypt-villus axis, with Wnt expression dominating in the crypt region and BMP expression dominating in the villi, it was possible that pooling whole tissue reduced our ability to detect treatment effects that would be concentrated in either region. A method was therefore developed to remove intestinal epithelial cells along the villus-to-crypt axis. Twenty-five-day-old F and SR piglets were euthanized and ileal tissue was collected and placed in a dissociation buffer in a shaking water bath. Exfoliated cells were removed at increasing time points from 5 to 100 minutes in order to remove cells along the villus-to-crypt axis. After the final incubation, remaining mucosal tissue was removed using a sterile glass microscope slide and pooled with the final exfoliated cell isolation. After each cell collection, a section of tissue was fixed in formalin for histomorphological examination. Expression of genes in the Wnt/BMP pathways, along with crypt marker genes (CDK5 and v-myb), were measured in both whole ileal tissue, pooled epithelial cells, and separate epithelial cell isolations from the same piglet. The expression of β-catenin, HNF-4α, TNF-α, TGF-β and the crypt marker v-myb matched the expected villus-to-crypt pattern in cells collected after 10 (incubation 1), 30 (incubation 2) and 60 (incubation 3) minutes. However, expression of expression in cells collected after 100 minutes (incubation 4) was variable, which may be due to the fact that crypt cells were not efficiently removed and the presence of unwanted non-epithelial tissue. Gremlin, OPN, DKK1, sFRP3 and sFRP4 expression was not statistically different along the villus-to-crypt axis. Frizzled 6 and CDK5 did not express as we had predicted, with expression highest towards the villi. In summary, the epithelial cell collection method used was not entirely successful. While much of the gene data suggests that cells were removed along the villus-to-crypt axis through the first three incubations, the last incubation, which involved scraping the tissue, removed non-epithelial components of the mucosa, while leaving the crypts intact. In conclusion, the addition of 2 g/L PDX and 2 g/L scFOS did not cause gene expression of the Wnt/BMP pathways to mirror either F or SR expression. New isolation methods to extract cells along the crypt-villus axis should be considered, including the use of a laser capture microdissection. While this combination of prebiotics did not yield the intended effects, future research should be done on other combinations, such as the inclusion of galactooligosaccharides (GOS), which is commonly added to food products including infant formula.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The function of the vascular endothelium is to maintain vascular homeostasis, by providing an anti-thrombotic, anti-inflammatory and vasodilatory interface between circulating blood and the vessel wall, meanwhile facilitating the selective passage of blood components such as signaling molecules and immune cells. Dysfunction of the vascular endothelium is implicated in a number of pathological states including atherosclerosis and hypertension, and is thought to precede atherogenesis by a number of years. Vascular endothelial growth factor A (VEGF) is a crucial mitogenic signaling molecule, not only essential for embryonic development, but also in the adult for regulating both physiological and pathological angiogenesis. Previous studies by our laboratory have demonstrated that VEGF-A activates AMP-activated protein kinase (AMPK), the downstream component of a signaling cascade important in the regulation of whole body and cellular energy status. Furthermore, studies in our laboratory have indicated that AMPK is essential for VEGF-A-stimulated vascular endothelial cell proliferation. AMPK activation typically stimulates anabolic processes and inhibits catabolic processes including cell proliferation, with the ultimate aim of redressing energy imbalance, and as such is an attractive therapeutic target for the treatment of obesity, metabolic syndromes, and type 2 diabetes. Metabolic diseases are associated with adverse cardiovascular outcomes and AMPK activation is reported to have beneficial effects on the vascular endothelium. The mechanism by which VEGF-A stimulates AMPK, and the functional consequences of VEGF-A-stimulated AMPK activation remain uncertain. The present study therefore aimed to identify the specific mechanism(s) by which VEGF-A regulates the activity of AMPK in endothelial cells, and how this might differ from the activation of AMPK by other agents. Furthermore, the role of AMPK in the pro-proliferative actions of VEGF-A was further examined. Human aortic and umbilical vein endothelial cells were therefore used as a model system to characterise the specific effect(s) of VEGF-A stimulation on AMPK activation. The present study reports that AMPK α1 containing AMPK complexes account for the vast majority of both basal and VEGF-A-stimulated AMPK activity. Furthermore, AMPK α1 is localized to the endoplasmic reticulum when sub-confluent, but translocated to the Golgi apparatus when cells are cultured to confluence. AMPK α2 appears to be associated with a structural cellular component, but neither α1 nor α2 complexes appear to translocate in response to VEGF-A stimulation. The present study confirms previous reports that when measured using the MTS cell proliferation assay, AMPK is required for VEGF-A-stimulated endothelial cell proliferation. However, parallel experiments measuring cell proliferation using the Real-Time Cell Analyzer xCELLigence system, do not agree with these previous reports, suggesting that AMPK may in fact be required for an aspect of mitochondrial metabolism which is enhanced by VEGF-A. Studies into the mitochondrial activity of endothelial cells have proved inconclusive at this time, but further studies into this are warranted. During previous studies in our laboratory, it was suggested that VEGF-A-stimulated AMPK activation may be mediated via the diacylglycerol (DAG)-sensitive transient receptor potential cation channel (TRPCs -3, -6 or -7) family of ion channels. The present study can neither confirm, nor exclude the expression of TRPCs in vascular endothelial cells, nor rule out their involvement in VEGF-A-stimulated AMPK activation; more specific investigative tools are required in order to characterise their involvement. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP)-stimulated Ca2+ release from acidic intracellular organelles is not required for AMPK activation by VEGF-A. Despite what is known about the mechanisms by which AMPK is activated, far less is known concerning the downregulation of AMPK activity, as observed in human and animal models of metabolic disease. Phosphorylation of AMPK α1 Ser485 (α2 Ser491) has recently been characterised as a mechanism by which the activity of AMPK is negatively regulated. We report here for the first time that VEGF-A stimulates AMPK α1 Ser485 phosphorylation independently of the previously reported AMPK α1 Ser485 kinases Akt (protein kinase B) and ERK1/2 (extracellular signal-regulated kinase 1/2). Furthermore, inhibition of protein kinase C (PKC), the activity of which is reported to be elevated in metabolic disease, attenuates VEGF-A- and phorbol 12-myristate 13-acetate (PMA)-stimulated AMPK α1 Ser485 phosphorylation, and increases basal AMPK activity. In contrast to this, PKC activation reduces AMPK activity in human vascular endothelial cells. Attempts to identify the PKC isoform responsible for inhibiting AMPK activity suggest that it is one (or more) of the Ca2+-regulated DAG-sensitive isoforms of PKC, however cross regulation of PKC isoform expression has limited the present study. Furthermore, AMPK α1 Ser485 phosphorylation was inversely correlated with human muscle insulin sensitivity. As such, enhanced AMPK α1 Ser485 phosphorylation, potentially mediated by increased PKC activation may help explain some of the reduced AMPK activity observed in metabolic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 mu g/L), isoproturon (0.1 and 1 mu g/L), or both in a mixture (0.2 and 0.1 mu g/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase alpha (AMPK alpha), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was upregulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Special low protein foods (SLPF) are essential in the nutritional management of patients with phenylketonuria (PKU). The study objectives were to: 1) identify the number of SLPF available for use in eight European countries and Turkey and 2) analyse the nutritional composition of SLPF available in one of these countries. Methods European Nutritionist Expert Panel on PKU (ENEP) members (Portugal, Spain, Belgium, Italy, Germany, Netherlands, UK, Denmark and Turkey) provided data on SPLF available in each country. The nutritional composition of Portuguese SLPF was compared with regular food products. Results The number of different SLPF available in each country varied widely with a median of 107 [ranging from 73 (Portugal) and 256 (Italy)]. Food analysis of SLPF available from a single country (Portugal) indicated that the mean phenylalanine content was higher in low protein baby cereals (mean 48 mg/100 g) and chocolate/energy bars/jelly (mean 41 mg/100 g). The energy content of different foods from a sub-group of SLPF (cookies) varied widely between 23 and 96 kcal/cookie. Low protein bread had a high fat content [mean 5.8 g/100 g (range 3.7 to 10)] compared with 1.6 g/100 g in regular bread. Seven of the 12 SLPF sub-groups (58 %) did not declare any vitamin content, and only 4 (33 %) identified a limited number of minerals. Conclusions Whilst equal and free access to all SLPF is desirable, the widely variable nutritional composition requires careful nutritional knowledge of all products when prescribed for individual patients with PKU. There is a need for more specific nutritional standards for special low protein foods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vivo and in vitro experiments were conducted to determine digestibility of GE and nutrients, as well as DE and ME of carbohydrates fed to growing pigs. The objective of Exp. 1 was to determine the DE and ME of 4 novel carbohydrates fed to pigs. The 4 novel carbohydrates were 2 sources of resistant starch (RS 60 and RS 70), soluble corn fiber (SCF), and pullulan. These carbohydrates were produced to increase total dietary fiber (TDF) intake by humans. Maltodextrin (MD) was used as a highly digestible control carbohydrate. The DE and ME for RS 60 (1,779 and 1,903 kcal/kg, respectively), RS 75(1,784 and 1,677 kcal/kg, respectively), and SCF (1,936 and 1,712 kcal/kg, respectively) were less (P < 0.05) than for MD (3,465 and 3,344 kcal/kg, respectively) and pullulan (2,755 and 2,766 kcal/kg, respectively), and pullulan contained less (P < 0.05) DE and ME than MD. However, there was no difference in the DE and ME for RS 60, RS 75, and SCF. The varying degrees of small intestinal digestibility and differences in fermentability among these novel carbohydrates may explain the differences in the DE and ME among carbohydrates. Therefore, the objectives of Exp. 2 were to determine the effect of these 4 novel carbohydrates and cellulose on apparent ileal (AID) and apparent total tract (ATTD) disappearance, and hindgut disappearance (HGD) of GE, TDF, and nutrients when added to diets fed to ileal-cannulated pigs. The second objective was to measure the endogenous flow of TDF to be able to calculate the standardized ileal disappearance (SID) and standardized total tract (STTD) disappearance of TDF in the 4 novel fibers fed to pigs. Results of the experiment indicated that the AID of GE and DM in diets containing cellulose or the novel fibers was less (P < 0.05) than of the maltodextrin diet, but the ATTD of GE and DM was not different among diets. The addition of RS 60, RS 75, and SCF did not affect the AID of acid hydrolysed ether extract (AEE), CP, or ash, but the addition of cellulose and pullulan reduced (P < 0.01) the AID of CP. The average ileal and total tract endogenous losses of TDF were calculated to be 25.25 and 42.87 g/kg DMI, respectively. The SID of TDF in diets containing RS 60, SCF, and pullulan were greater (P < 0.01) than the SID of TDF in the cellulose diet, but the STTD of the SCF diet was greater (P < 0.05) than for the cellulose and pullulan diets. Results of this experiment indicate that the presence of TDF reduces small intestinal disappearance of total carbohydrates and energy which may reduce the DE and ME of diets and ingredients. Therefore, the objective of Exp. 3 was to determine the DE and ME in yellow dent corn, Nutridense corn, dehulled barley, dehulled oats, polished rice, rye, sorghum, and wheat fed to growing pigs and to determine the AID and ATTD of GE, OM, CP, AEE, starch, total carbohydrates, and TDF in these cereal grains fed to pigs. Results indicated that the AID of GE, OM, and total carbohydrates was greater (P < 0.001) in rice than in all other cereal grains. The AID of starch was also greater (P < 0.001) in rice than in yellow dent corn, dehulled barley, rye, and wheat. The ATTD of GE was greater (P < 0.001) in rice than in yellow dent corn, rye, sorghum, and wheat. With a few exceptions, the AID and ATTD of GE and nutrients in Nutridense corn was not different from the values for dehulled oats. Likewise, with a few exceptions, the AID, ATTD, and HGD of GE, OM, total carbohydrates, and TDF in yellow corn, sorghum, and wheat were not different from each other. The AID of GE and AEE in dehulled barley was greater (P < 0.001) than in rye. The ATTD of GE and most nutrients was greater (P < 0.001) in dehulled barley than in rye. Dehulled oats had the greatest (P < 0.001) ME (kcal/kg DM) whereas rye had the least ME (kcal/kg DM) among the cereal grains. Results of the experiment indicate that the presence of TDF and RS may reduce small intestinal digestibility of starch in cereal grains resulting in reduced DE and ME in these grains. Digestibility experiments involving animals are time consuming and expensive. Therefore, the objective of Exp. 4 was to correlate DM and OM digestibility obtained from 3 in vitro procedures with ATTD of GE and with the concentration of DE in 50 corn samples that were fed to growing pigs. The second objective was to develop a regression model that can predict the ATTD of GE or the concentration of DE in corn. The third objective was to evaluate the suitability of using the DaisyII incubator as an alternative to the traditional water bath when determining in vitro DM and OM digestibility. Results indicated that corn samples incubated with Viscozyme for 48 h in the DaisyII incubator improved (P < 0.001) the ability of the procedure to detect small differences in the ATTD of GE or to detect small differences in the concentration of DE in corn. Likewise, compared with using cellulase or fecal inoculum, the variability in the ATTD of GE and the variability in the DE in corn was better (R2 = 0.56; P < 0.05 and R2 = 0.53; P < 0.06, respectively) explained if Viscozyme was used than if cellulase or fecal inoculum was used. A validated regression model that predicted the DE in corn was developed using Viscozyme and with the corn samples incubated in the DaisyII incubator for a 48 h. In conclusion, this present work used the pig as a model for human gastrointestinal function and evaluates carbohydrates from 2 different nutritional perspectives – humans and animals. The addition of novel carbohydrates reduced the digestibility of energy in the diets without necessarily reducing the digestibility of other nutrients. Thus, supplementation of novel carbohydrates in the diets may be beneficial for the management of diabetes. Aside from diabetic management, cereal grains such as rye and sorghum, may also help in BW management because of there low caloric value, but for undernourished individuals, dehulled oats, dehulled barley, and rice are the ideal grains. From an animal nutrition standpoint, high concentration of dietary fiber is undesirable because it reduces feed efficiency. Therefore, the inclusion of feed ingredients that have a high concentration of dietary fiber is often limited in animal diets. Although in vivo determination is ideal, in vitro procedures are useful tools to determine caloric value of food and feed ingredients.