951 resultados para Protein kinase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Initiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression. Further, pharmacological inhibition of ERK1/2, but not of p38 MAP kinase or JNK abrogated the induced expression of SOCS3. The PIM2 induced activation of ERK1/2 was dependent on the activation of PI3K or PKC signaling which in turn regulated p65 nuclear factor -kappa B (NF-kappa B) nuclear translocation. Overall, current study delineates the role for PI3K-PKC axis and ERK1/2 signaling as key signaling events during PIM2 induced SOCS3 expression in macrophages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the synchronous embryogenesis system of sandalwood developed in our laboratory, we observed that the early events of differentiation from freshly induced callus (stage 0) are accomplished in three distinct stages viz., preglobular masses (stage 1), globular embryos (stage 2), and bipolar embryos (stage 3). Transition from stage 0 to 1 was accomplished using 2,4-D and involves a stage specific appearance of two polypeptides of 15 and 30 kDa molecular weight. A 24 kDa polypeptide that was detected as a marked band in extracts of primary callus was not detected in stages 1, 2, and 3. Further, the tissue level of a 50 kDa glycoprotein decreased during transition from stage 2 to stage 3. However, the levels of glycoproteins in the medium were markedly higher in stage 0 cultures compared to those in stage 1. The activities of a protein kinase, glycosidase, and xylanase increased markedly with progressing embryogenesis. Our observations suggest that in addition to being controlled at the level of stage-specific gene expression, somatic embryogenesis in sandalwood is also regulated at the level of controls on cell wall flexibility and posttranslational changes in the pool of preexisting proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tropospheric ozone (O3) is one of the most common air pollutants in industrialized countries, and an increasing problem in rapidly industrialising and developing countries in Asia, Africa and South America. Elevated concentrations of tropospheric O3 can lead to decrease in photosynthesis rate and therefore affect the normal metabolism, growth and seed production. Acute and high O3 episodes can lead to extensive damage leading to dead tissue in plants. Thus, O3 derived growth defects can lead to reduction in crop yield thereby leading to economical losses. Despite the extensive research on this area, many questions remain open on how these processes are controlled. In this study, the stress-induced signaling routes and the components involved were elucidated in more detail starting from visual damage to changes in gene expression, signaling routes and plant hormone interactions that are involved in O3-induced cell death. In order to elucidate O3-induced responses in Arabidopsis, mitogen-activated protein kinase (MAPK) signaling was studied using different hormonal signaling mutants. MAPKs were activated at the beginning of the O3 exposure. The activity of MAPKs, which were identified as AtMPK3 and AtMPK6, reached the maximum at 1 and 2 hours after the start of the exposure, respectively. The activity decreased back to clean air levels at 8 hours after the start of the exposure. Both AtMPK3 and AtMPK6 were translocated to nucleus at the beginning of the O3 exposure where they most likely affect gene expression. Differences were seen between different hormonal signaling mutants. Functional SA signaling was shown to be needed for the full protein levels and activation of AtMPK3. In addition, AtMPK3 and AtMPK6 activation was not dependent on ethylene signaling. Finally, jasmonic acid was also shown to have an impact on AtMPK3 protein levels and AtMPK3 activity. To further study O3-induced cell death, an earlier isolated O3 sensitive Arabidopsis mutant rcd1 was mapped, cloned and further characterized. RCD1 was shown to encode a gene with WWE and ADP-ribosylation domains known to be involved in protein-protein interactions and cell signaling. rcd1 was shown to be involved in many processes including hormonal signaling and regulation of stress-responsive genes. rcd1 is sensitive against O3 and apoplastic superoxide, but tolerant against paraquat that produces superoxide in chloroplast. rcd1 is also partially insensitive to glucose and has alterations in hormone responses. These alterations are seen as ABA insensitivity, reduced jasmonic acid sensitivity and reduced ethylene sensitivity. All these features suggest that RCD1 acts as an integrative node in hormonal signaling and it is involved in the hormonal regulation of several specific stress-responsive genes. Further studies with the rcd1 mutant showed that it exhibits the classical features of programmed cell death, PCD, in response to O3. These include nuclear shrinkage, chromatin condensation, nuclear DNA degradation, cytosol vesiculation and accumulation of phenolic compounds and eventually patches of HR-like lesions. rcd1 was found to produce extensive amount of salicylic acid and jasmonic acid in response to O3. Double mutant studies showed that SA independent and dependent processes were involved in the O3-induced PCD in rcd1 and that increased sensitivity against JA led to increased sensitivity against O3. Furthermore, rcd1 had alterations in MAPK signature that resembled changes that were previously seen in mutants defective in SA and JA signaling. Nitric oxide accumulation and its impact on O3-induced cell death were also studied. Transient accumulation of NO was seen at the beginning of the O3 exposure, and during late time points, NO accumulation coincided with the HR-like lesions. NO was shown to modify defense gene expression, such as, SA and ethylene biosynthetic genes. Furthermore, rcd1 was shown to produce more NO in control conditions. In conclusion, NO was shown to be involved in O3-induced signaling leading to attenuation of SA biosynthesis and other defense related genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Objective: Oral submucous fibrosis, a disease of collagen disorder, has been attributed to arecoline present in the saliva of betel quid chewers. However, the molecular basis of the action of arecoline in the pathogenesis of oral submucous fibrosis is poorly understood. The basic aim of our study was to elucidate the mechanism underlying the action of arecoline on the expression of genes in oral fibroblasts. Material and Methods: Human keratinocytes (HaCaT cells) and primary human gingival fibroblasts were treated with arecoline in combination with various pathway inhibitors, and the expression of transforming growth factor-beta isoform genes and of collagen isoforms was assessed using reverse transcription polymerase chain reaction analysis. Results: We observed the induction of transforming growth factor-beta2 by arecoline in HaCaT cells and this induction was found to be caused by activation of the M-3 muscarinic acid receptor via the induction of calcium and the protein kinase C pathway. Most importantly, we showed that transforming growth factor-beta2 was significantly overexpressed in oral submucous fibrosis tissues (p = 0.008), with a median of 2.13 (n = 21) compared with 0.75 (n = 18) in normal buccal mucosal tissues. Furthermore, arecoline down-regulated the expression of collagens 1A1 and 3A1 in human primary gingival fibroblasts; however these collagens were induced by arecoline in the presence of spent medium of cultured human keratinocytes. Treatment with a transforming growth factor-beta blocker, transforming growth factor-beta1 latency-associated peptide, reversed this up-regulation of collagen, suggesting a role for profibrotic cytokines, such as transforming growth factor-beta, in the induction of collagens. Conclusion: Taken together, our data highlight the importance of arecoline-induced epithelial changes in the pathogenesis of oral submucous fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants are rooted to their growth place; therefore it is important that they react adequately to changes in environmental conditions. Stomatal pores, which are formed of a pair of guard cells in leaf epidermis, regulate plant gas-exchange. Importantly, guard cells protect the plant from desiccation in drought conditions by reducing the aperture of the stomatal pore. They serve also as the first barrier against the major air pollutant ozone, but the behaviour of guard cells during ozone exposure has not been sufficiently addressed. Aperture of the stomatal pore is regulated by the influx and efflux of osmotically active ions via ion channels and transporters across the guard cell membrane, however the molecular identity of guard cell plasma membrane anion channel has remained unknown. In the frame of this study, guard cell behaviour during ozone exposure was studied using the newly constructed Arabidopsis whole-rosette gas-exchange system. Ozone induced a Rapid Transient Decrease (RTD) in stomatal conductance within 10 min from the start of exposure, which was followed by a recovery in the conductance within the next 40 min. The decrease in stomatal conductance was dependent on the applied ozone concentration. Three minutes of ozone exposure was sufficient to induce RTD and further ozone application during the closure-recovery process had no effect on RTD, demonstrating that the whole process is programmed within the first three minutes. To address the molecular components responsible for RTD, the ozone response was measured in 59 different Arabidopsis mutants involved in guard cell signalling. Four of the tested mutants slac1 (originally rcd3), ost1, abi1-1 and abi2-1 lacked RTD completely. As the ozone sensitive mutant slac1 lacked RTD, the next aim of this study was to identify and characterize SLAC1. SLAC1 was shown to be a central regulator in response to all major factors regulating guard cell aperture: CO2, light/darkness transitions, ozone, relative air humidity, ABA, NO, H2O2, and extracellular Ca2+. It encodes the first guard cell plasma membrane slow type anion channel to be identified at the molecular level. Interestingly, the rapid type anion conductance was intact in slac1 mutant plants. For activation, SLAC1 needs to be phosphorylated. Protein kinase OST1 was shown to phosphorylate several amino acids in the N-terminal tail of SLAC1, Ser120 was one of its main targets, which led to SLAC1 activation. The lack of RTD in type 2C protein phosphatase mutants abi1-1 and abi2-1, suggests that these proteins have a regulatory role in ozoneinduced activation of the slow type anion channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activation of inflammatory immune responses during granuloma formation by the host upon infection of mycobacteria is one of the crucial steps that is often associated with tissue remodeling and breakdown of the extracellular matrix. In these complex processes, cyclooxygenase-2 (COX-2) plays a major role in chronic inflammation and matrix metalloproteinase-9 (MMP-9) significantly in tissue remodeling. In this study, we investigated the molecular mechanisms underlying Phosphatidyl-myo-inositol dimannosides (PIM2), an integral component of the mycobacterial envelope, triggered COX-2 and MMP-9 expression in macrophages. PIM2 triggers the activation of Phosphoinositide-3 Kinase (PI3K) and Notch1 signaling leading to COX-2 and MMP-9 expression in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Notch1 signaling perturbations data demonstrate the involvement of the cross-talk with members of PI3K and Mitogen activated protein kinase pathway. Enforced expression of the cleaved Notch1 in macrophages induces the expression of COX-2 and MMP-9. PIM2 triggered significant p65 nuclear factor-kappa B (NF-kappa B) nuclear translocation that was dependent on activation of PI3K or Notch1 signaling. Furthermore, COX-2 and MMP-9 expression requires Notch1 mediated recruitment of uppressor of Hairless (CSL) and NF-kappa B to respective promoters. Inhibition of PIM2 induced COX-2 resulted in marked reduction in MMP-9 expression clearly implicating the role of COX-2 dependent signaling events in driving the MMP-9 expression. Taken together, these data implicate PI3K and Notch1 signaling as obligatory early proximal signaling events during PIM2 induced COX-2 and MMP-9 expression in macrophages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hematogenous metastases are rarely present at diagnosis of ovarian clear cell carcinoma (OCC). Instead dissemination of these tumors is characteristically via direct extension of the primary tumor into nearby organs and the spread of exfoliated tumor cells throughout the peritoneum, initially via the peritoneal fluid, and later via ascites that accumulates as a result of disruption of the lymphatic system. The molecular mechanisms orchestrating these processes are uncertain. In particular, the signaling pathways used by malignant cells to survive the stresses of anchorage-free growth in peritoneal fluid and ascites, and to colonize remote sites, are poorly defined. We demonstrate that the transmembrane glycoprotein CUB-domain-containing protein 1 (CDCP1) has important and inhibitable roles in these processes. In vitro assays indicate that CDCP1 mediates formation and survival of OCC spheroids, as well as cell migration and chemoresistance. Disruption of CDCP1 via silencing and antibody-mediated inhibition markedly reduce the ability of TOV21G OCC cells to form intraperitoneal tumors and induce accumulation of ascites in mice. Mechanistically our data suggest that CDCP1 effects are mediated via a novel mechanism of protein kinase B (Akt) activation. Immunohistochemical analysis also suggested that CDCP1 is functionally important in OCC, with its expression elevated in 90% of 198 OCC tumors and increased CDCP1 expression correlating with poor patient disease-free and overall survival. This analysis also showed that CDCP1 is largely restricted to the surface of malignant cells where it is accessible to therapeutic antibodies. Importantly, antibody-mediated blockade of CDCP1 in vivo significantly increased the anti-tumor efficacy of carboplatin, the chemotherapy most commonly used to treat OCC. In summary, our data indicate that CDCP1 is important in the progression of OCC and that targeting pathways mediated by this protein may be useful for the management of OCC, potentially in combination with chemotherapies and agents targeting the Akt pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is an autosomal dominant disorder manifested by the formation of multiple benign tumors of the nervous system. Affected individuals typically develop bilateral vestibular schwannomas which lead to deafness and balance disorders. The syndrome is caused by inactivation of the NF2 tumor suppressor gene, and mutation or loss of the NF2 product, merlin, is sufficient for tumorigenesis in both hereditary and sporadic NF2-associated tumors. Merlin belongs to the band 4.1 superfamily of cytoskeletal proteins, which also contain the related ezrin, radixin, and moesin (ERM) proteins. The ERM members provide a link between the cell cytoskeleton and membrane by connecting membrane-associated proteins to actin filaments. By stabilizing complexes in the cell cortex, the ERMs modulate morphology, growth, and migration of cells. Despite their structural homology, overlapping subcellular distribution, direct molecular association, and partial overlap of molecular interactions, merlin and ezrin exert opposite effects on cell proliferation. Merlin suppresses cell proliferation, whereas ezrin expression is linked to oncogenic activity. We hypothesized that the regions which differ between the proteins might explain merlin s specificity as a tumor suppressor. We therefore analyzed the regions, which are most diverse between merlin and ezrin; the N-terminal tail and the C-terminus. To determine the properties of the C-terminal region, we studied the two most predominant merlin isoforms together with truncation variants similar to those found in patients. We also focused on the evolutionally conserved C-terminal residues, E545-E547, that harbor disease causing mutations in its corresponding DNA sequence. In addition to inhibiting cell proliferation, merlin regulates cytoskeletal organization. The morphogenic properties of merlin may play a role in tumor suppression, since patient-derived tumor cells demonstrate cytoskeletal abnormalities. We analyzed the mechanisms of merlin-induced extension formation and determined that the C-terminal region of amino acids 538-568 is particularly important for the morphogenic activity. We also characterized the role of C-terminal merlin residues in the regulation of proliferation, phosphorylation, and intramolecular associations. In contrast to previous reports, we demonstrated that both merlin isoforms are able to suppress cell proliferation, whereas C-terminally mutated merlin constructs showed reduced growth inhibition. Phosphorylation serves as a mechanism to regulate the tumor suppressive activity of merlin. The C-terminal serine 518 is phosphorylated in response to both p21-activated kinase (PAK) and protein kinase A (PKA), which inactivates the growth inhibitory function of merlin. However, at least three differentially phosphorylated forms of the protein exist. In this study we demonstrated that also the N-terminus of merlin is phosphorylated by AGC kinases, and that both PKA and Akt phosphorylate merlin at serine 10 (S10). We evaluated the impact of this N-terminal tail phosphorylation, and showed that the phosphorylation state of S10 is an important regulator of merlin s ability to modulate cytoskeletal organization but also regulates the stability of the protein. In summary, this study describes the functional effect of merlin specific regions. We demonstrate that both S10 in the N-terminal tail and residues E545-E547 in the C-terminus are essential for merlin activity and function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

H2O2, in addition to producing highly reactive molecules through hydroxyl radicals or peroxidase action, can exert a number of direct effects on cells, organelles and enzymes. The stimulations include glucose transport, glucose incorporation into glycogen, HMP shunt pathway, lipid synthesis, release of calcium from mitochondria and of arachidonate from phospholipids, poly ADP ribosylation, and insulin receptor tyrosine kinase and pyruvate dehydrogenase activities. The inactivations include glycolysis, lipolysis, reacylation of lysophospholipids, ATP synthesis, superoxide dismutase and protein kinase C. Damages to DNA and proteoglycan and general cytotoxicity possibly through oxygen radicals were also observed. A whole new range of effects will be opened by the finding that H2O2 can act as a signal transducer in oxidative stress by oxidizing a dithiol protein to disulphide form which then activates transcription of the stress inducible genes. Many of these direct effects seem to be obtained by dithiol-disulphide modification of proteins and their active sites, as part of adaptive responses in oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soluble chromatin was prepared from rat testes after a brief micrococcal nuclease digestion. After adsorption onto hydroxylapatite at low ionic strength, the histone Hl subtypes were eluted with a shallow salt gradient of 0.3 M NaCl to 0.7 M NaCl. Histone Hlt was eluted at 0.4 MNaCl, while histones H1a and Hlc were eluted at 0.43 M NaCl and 0.45 M respectively. The extreme divergence of the amino acid sequence of the C-terminal half of histone Hlt, the major DNA binding domain of histone Hl, from that of the somatic consensus sequence may contribute to the weaker interaction of histone Hlt with the rat testis chromatin. Further, histone Hlt was not phosphorylated in vivo in contrast to histone Hla and Hlc, as is evident from the observation that histone Hlt lacks the SPKK motif recognized by the CDC-2kinase or the RR/KXS motif recognized by protein kinase A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the role of cAMP/cGMP, protein kinases and intracellular calcium ( [Ca2+](i)) in pentoxifylline-stimulated hamster sperm capacitation and the acrosome reaction (AR) in vitro. Treatment with pentoxifylline [0.45 mM) initially increased sperm cAMP values 2.8-fold, compared with untreated controls (396 +/- 9.2 versus 141 +/- 6.0 fmoles/10(6) spermatozoa; mean +/- SEM, n = 6) after 15 min, although by 3 h, cAMP values were similar (503-531 fmoles/10(6) spermatozoal, cGMP values (similar to 27 fmoles/10(6) spermatozoa) were the same in treated and control spermatozoa. Both sperm capacitation and the AR, determined from the absence of an acrosomal cap, were stimulated by pentoxifylline; these were almost completely inhibited by a Cl-/HCO(3)(-)antiporter inhibitor (4,4-diisothiocyanato-stilbene-2,2 disulphonic acid; 1 mM) defined from the degree of sperm motility and by a protein kinase A inhibitor (H89; 10 mu M) A protein kinase G inhibitor (staurosporine, 1 nM) did not affect pentoxifylline-stimulated capacitation but inhibited the AR by 50%. A protein tyrosine kinase inhibitor (tyrphostin A-47, 0.1 mM) had no effect on either pentoxifylline-stimulated capacitation or AR, A phospholipase A(2) inhibitor (aristolochic acid, 0.4 mM) markedly inhibited the pentoxifylline-stimulated AR but not capacitation. When intracellular sperm calcium [Ca2+](i) was measured using fura-2-AM, there was an early rise 271 nM at 0.5 hi in pentoxifylline(-treated spermatozoa; this appeared to be due to intracellular mobilization rather than to uptake. In the absence of extracellular Ca2+, sperm motility was maintained in the presence of pentoxifylline, but capacitation did not occur; spermatozoa exhibited a low level of hyperactivated motility and had a poor rate of AR(20.5 +/- 2.3%). These results suggest that: (i) the pentoxifylline-stimulated early onset of sperm capacitation may be mediated by an early rise in cAMP and [Ca2+/-](i) and involves protein kinase A activity; and (ii) pentoxifylline-stimulated AR may require phospholipase A;A(2) and protein kinase C activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic alpha (FIS alpha) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway. (C) 2011 Elsevier Inc. All rights reserved.