911 resultados para Probabilistic logic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel application of fuzzy logic to web data mining for two basic problems of a website: popularity and satisfaction. Popularity means that people will visit the website while satisfaction refers to the usefulness of the site. We will illustrate that the popularity of a website is a fuzzy logic problem. It is an important characteristic of a website in order to survive in Internet commerce. The satisfaction of a website is also a fuzzy logic problem that represents the degree of success in the application of information technology to the business. We propose a framework of fuzzy logic for the representation of these two problems based on web data mining techniques to fuzzify the attributes of a website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rocks used as construction aggregate in temperate climates deteriorate to differing degrees because of repeated freezing and thawing. The magnitude of the deterioration depends on the rock's properties. Aggregate, including crushed carbonate rock, is required to have minimum geotechnical qualities before it can be used in asphalt and concrete. In order to reduce chances of premature and expensive repairs, extensive freeze-thaw tests are conducted on potential construction rocks. These tests typically involve 300 freeze-thaw cycles and can take four to five months to complete. Less time consuming tests that (1) predict durability as well as the extended freeze-thaw test or that (2) reduce the number of rocks subject to the extended test, could save considerable amounts of money. Here we use a probabilistic neural network to try and predict durability as determined by the freeze-thaw test using four rock properties measured on 843 limestone samples from the Kansas Department of Transportation. Modified freeze-thaw tests and less time consuming specific gravity (dry), specific gravity (saturated), and modified absorption tests were conducted on each sample. Durability factors of 95 or more as determined from the extensive freeze-thaw tests are viewed as acceptable—rocks with values below 95 are rejected. If only the modified freeze-thaw test is used to predict which rocks are acceptable, about 45% are misclassified. When 421 randomly selected samples and all four standardized and scaled variables were used to train aprobabilistic neural network, the rate of misclassification of 422 independent validation samples dropped to 28%. The network was trained so that each class (group) and each variable had its own coefficient (sigma). In an attempt to reduce errors further, an additional class was added to the training data to predict durability values greater than 84 and less than 98, resulting in only 11% of the samples misclassified. About 43% of the test data was classed by the neural net into the middle group—these rocks should be subject to full freeze-thaw tests. Thus, use of the probabilistic neural network would meanthat the extended test would only need be applied to 43% of the samples, and 11% of the rocks classed as acceptable would fail early.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Race is fundamental in shaping the development of Australian law just as it has played its part in other former colonies, such as the United States, where a body of critical race theory has been established on the basis of this premise. Drawing on this theory I argue that the possessive logic of patriarchal white sovereignty works ideologically to naturalise the nation as a white possession by informing and circulating a coherent set of meanings about white possession as part of common sense knowledge and socially produced conventions in the High Court's Yorta Yorta decision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the statistical problem of catalogue matching from a machine learning perspective with the goal of producing probabilistic outputs, and using all available information. A framework is provided that unifies two existing approaches to producing probabilistic outputs in the literature, one based on combining distribution estimates and the other based on combining probabilistic classifiers. We apply both of these to the problem of matching the HI Parkes All Sky Survey radio catalogue with large positional uncertainties to the much denser SuperCOSMOS catalogue with much smaller positional uncertainties. We demonstrate the utility of probabilistic outputs by a controllable completeness and efficiency trade-off and by identifying objects that have high probability of being rare. Finally, possible biasing effects in the output of these classifiers are also highlighted and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. Results: Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. Conclusion: Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.