993 resultados para Probabilistic Algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose
The Strengths and Difficulties Questionnaire (SDQ) is a behavioural screening tool for children. The SDQ is increasingly used as the primary outcome measure in population health interventions involving children, but it is not preference based; therefore, its role in allocative economic evaluation is limited. The Child Health Utility 9D (CHU9D) is a generic preference-based health-related quality of-life measure. This study investigates the applicability of the SDQ outcome measure for use in economic evaluations and examines its relationship with the CHU9D by testing previously published mapping algorithms. The aim of the paper is to explore the feasibility of using the SDQ within economic evaluations of school-based population health interventions.
Methods
Data were available from children participating in a cluster randomised controlled trial of the school-based roots of empathy programme in Northern Ireland. Utility was calculated using the original and alternative CHU9D tariffs along with two SDQ mapping algorithms. t tests were performed for pairwise differences in utility values from the preference-based tariffs and mapping algorithms.
Results
Mean (standard deviation) SDQ total difficulties and prosocial scores were 12 (3.2) and 8.3 (2.1). Utility values obtained from the original tariff, alternative tariff, and mapping algorithms using five and three SDQ subscales were 0.84 (0.11), 0.80 (0.13), 0.84 (0.05), and 0.83 (0.04), respectively. Each method for calculating utility produced statistically significantly different values except the original tariff and five SDQ subscale algorithm.
Conclusion
Initial evidence suggests the SDQ and CHU9D are related in some of their measurement properties. The mapping algorithm using five SDQ subscales was found to be optimal in predicting mean child health utility. Future research valuing changes in the SDQ scores would contribute to this research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hidden Markov models (HMMs) are widely used probabilistic models of sequential data. As with other probabilistic models, they require the specification of local conditional probability distributions, whose assessment can be too difficult and error-prone, especially when data are scarce or costly to acquire. The imprecise HMM (iHMM) generalizes HMMs by allowing the quantification to be done by sets of, instead of single, probability distributions. iHMMs have the ability to suspend judgment when there is not enough statistical evidence, and can serve as a sensitivity analysis tool for standard non-stationary HMMs. In this paper, we consider iHMMs under the strong independence interpretation, for which we develop efficient inference algorithms to address standard HMM usage such as the computation of likelihoods and most probable explanations, as well as performing filtering and predictive inference. Experiments with real data show that iHMMs produce more reliable inferences without compromising the computational efficiency.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a probabilistic principal component analysis (PCA) approach applied to islanding detection study based on wide area PMU data. The increasing probability of uncontrolled islanding operation, according to many power system operators, is one of the biggest concerns with a large penetration of distributed renewable generation. The traditional islanding detection methods, such as RoCoF and vector shift, are however extremely sensitive and may result in many unwanted trips. The proposed probabilistic PCA aims to improve islanding detection accuracy and reduce the risk of unwanted tripping based on PMU measurements, while addressing a practical issue on missing data. The reliability and accuracy of the proposed probabilistic PCA approach are demonstrated using real data recorded in the UK power system by the OpenPMU project. The results show that the proposed methods can detect islanding accurately, without being falsely triggered by generation trips, even in the presence of missing values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field programmable gate array (FPGA) technology is a powerful platform for implementing computationally complex, digital signal processing (DSP) systems. Applications that are multi-modal, however, are designed for worse case conditions. In this paper, genetic sequencing techniques are applied to give a more sophisticated decomposition of the algorithmic variations, thus allowing an unified hardware architecture which gives a 10-25% area saving and 15% power saving for a digital radar receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Markov Decision Processes (MDPs) are extensively used to encode sequences of decisions with probabilistic effects. Markov Decision Processes with Imprecise Probabilities (MDPIPs) encode sequences of decisions whose effects are modeled using sets of probability distributions. In this paper we examine the computation of Γ-maximin policies for MDPIPs using multilinear and integer programming. We discuss the application of our algorithms to “factored” models and to a recent proposal, Markov Decision Processes with Set-valued Transitions (MDPSTs), that unifies the fields of probabilistic and “nondeterministic” planning in artificial intelligence research. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O desenvolvimento de sistemas computacionais é um processo complexo, com múltiplas etapas, que requer uma análise profunda do problema, levando em consideração as limitações e os requisitos aplicáveis. Tal tarefa envolve a exploração de técnicas alternativas e de algoritmos computacionais para optimizar o sistema e satisfazer os requisitos estabelecidos. Neste contexto, uma das mais importantes etapas é a análise e implementação de algoritmos computacionais. Enormes avanços tecnológicos no âmbito das FPGAs (Field-Programmable Gate Arrays) tornaram possível o desenvolvimento de sistemas de engenharia extremamente complexos. Contudo, o número de transístores disponíveis por chip está a crescer mais rapidamente do que a capacidade que temos para desenvolver sistemas que tirem proveito desse crescimento. Esta limitação já bem conhecida, antes de se revelar com FPGAs, já se verificava com ASICs (Application-Specific Integrated Circuits) e tem vindo a aumentar continuamente. O desenvolvimento de sistemas com base em FPGAs de alta capacidade envolve uma grande variedade de ferramentas, incluindo métodos para a implementação eficiente de algoritmos computacionais. Esta tese pretende proporcionar uma contribuição nesta área, tirando partido da reutilização, do aumento do nível de abstracção e de especificações algorítmicas mais automatizadas e claras. Mais especificamente, é apresentado um estudo que foi levado a cabo no sentido de obter critérios relativos à implementação em hardware de algoritmos recursivos versus iterativos. Depois de serem apresentadas algumas das estratégias para implementar recursividade em hardware mais significativas, descreve-se, em pormenor, um conjunto de algoritmos para resolver problemas de pesquisa combinatória (considerados enquanto exemplos de aplicação). Versões recursivas e iterativas destes algoritmos foram implementados e testados em FPGA. Com base nos resultados obtidos, é feita uma cuidada análise comparativa. Novas ferramentas e técnicas de investigação que foram desenvolvidas no âmbito desta tese são também discutidas e demonstradas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viscoelastic treatments are one of the most efficient treatments, as far as passive damping is concerned, particularly in the case of thin and light structures. In this type of treatment, part of the strain energy generated in the viscoelastic material is dissipated to the surroundings, in the form of heat. A layer of viscoelastic material is applied to a structure in an unconstrained or constrained configuration, the latter proving to be the most efficient arrangement. This is due to the fact that the relative movement of both the host and constraining layers cause the viscoelastic material to be subjected to a relatively high strain energy. There are studies, however, that claim that the partial application of the viscoelastic material is just as efficient, in terms of economic costs or any other form of treatment application costs. The application of patches of material in specific and selected areas of the structure, thus minimising the extension of damping material, results in an equally efficient treatment. Since the damping mechanism of a viscoelastic material is based on the dissipation of part of the strain energy, the efficiency of the partial treatment can be correlated to the modal strain energy of the structure. Even though the results obtained with this approach in various studies are considered very satisfactory, an optimisation procedure is deemed necessary. In order to obtain optimum solutions, however, time consuming numerical simulations are required. The optimisation process to use the minimum amount of viscoelastic material is based on an evolutionary geometry re-design and calculation of the modal damping, making this procedure computationally costly. To avert this disadvantage, this study uses adaptive layerwise finite elements and applies Genetic Algorithms in the optimisation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete supervised training algorithms for B-spline neural networks and fuzzy rule-based systems are discussed. By interducing the relationship between B-spline neural networks and certain types of fuzzy models, training algorithms developed initially for neural networks can be adapted by fuzzy systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid developments in microelectronics and computer science continue to fuel new opportunities for real-time control engineers. The ever-increasing system complexity and sophistication, environmental legislation, economic competition, safety and reliability constitute some of the driving forces for the research themes presented at the IFAC Workshop on Algorithms and Architectures for Real-Time Control (AARTC'2000). The Spanish Society for Automatic Control hosted AARTC'2000, which was held at Palma de Maiorca, Spain, from 15 to 17 May. This workshop was the sixth in the series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of parallel processing architectures allowed the real time impelemtation of more sophisticated control algorithms with tighter specifications in terms of sampling time. However, to take advantage of the processing power of these architectures the control engeneer, due to the lack of appropriate tools, must spend a considerable amount of time in the parallelizaton of the control algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithm and Architectures for Real-Time Control Workshop had the objective to investigate the state of the art and to present new research and application results in software and hardware for real-timecontrol, as well as to bring together engeneers and computer scientists who are researchers, developers and practitioners, both from the academic and the industrial world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The normal design process for neural networks or fuzzy systems involve two different phases: the determination of the best topology, which can be seen as a system identification problem, and the determination of its parameters, which can be envisaged as a parameter estimation problem. This latter issue, the determination of the model parameters (linear weights and interior knots) is the simplest task and is usually solved using gradient or hybrid schemes. The former issue, the topology determination, is an extremely complex task, especially if dealing with real-world problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the crucial problems of fuzzy rule modeling is how to find an optimal or at least a quasi-optimal rule base fro a certain system. In most applications there is no human expert available, or, the result of a human expert's decision is too much subjective and is not reproducible, thus some automatic method to determine the fuzzy rule base must be deployed.