990 resultados para Private library
Resumo:
The defensive skin secretions of many amphibians contain a wide spectrum of biologically active compounds, particularly antimicrobial peptides that act as a first line of defence against bacterial infection. Here we describe for the first time the identification of three novel dermaseptin-related peptides (dermaseptins sVI–sVIII) whose primary structures were deduced from cDNAs cloned from a library constructed from lyophilised skin secretion of the South American hylid frog, Phyllomedusa sauvagei. The molecular masses of each were subsequently confirmed by interrogation of archived LC/MS files of fractionated skin secretion followed by automated Edman degradation sequencing. The heterogeneity of primary structures encountered in amphibian skin antimicrobial peptides may in part be explained by individual variation—a factor essential for selective functional molecular evolution and perhaps, ultimately in speciation.
Resumo:
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy characterized by maternal systemic endothelial dysfunction. While the clinical manifestations resolve soon after delivery, a large body of epidemiological evidence indicates significant long-term maternal risk for cardiovascular disease (CVD) after PE. The mechanisms by which PE and future CVD are associated are unclear, although shared constitutional risk factors likely contribute to the features of endothelial dysfunction characteristic to both. We postulate that PE offers a window of opportunity for the identification of unique markers of dysfunction in the earliest stages of disease that may be used to validate cardiovascular risk screening in the early postpartum period. The studies presented in this thesis provide evidence of changes in circulating factors in women with a recent history of PE. Using blood samples collected within the first year of pregnancy, unique patterns of microRNA expression, enrichment of coagulation system proteins and endothelial progenitor cell dysfunction were described. Many of the described changes appear to be independent of cardiovascular risk. In addition to alterations in circulating factors however, longitudinal postpartum assessments demonstrated that microvascular and cardiac abnormalities were evident in the early periods postpartum after a pre-eclamptic pregnancy. Collectively, the data presented in this thesis reveal that physiological alterations in women with a recent history of PE are not necessarily dependent on clinical parameters of cardiovascular risk, and that resulting dysfunction may be demonstrated within the first year postpartum. Importantly, the biomarkers presented herein are all demonstrated elsewhere in the literature to benefit from lifestyle modification and risk reduction. In closing, the findings of this thesis support a need for cardiovascular risk screening based on obstetrical history, namely after pregnancies complicated by PE.
Resumo:
The objective of this thesis was to determine whether the establishment and operation of an archives services by the Hudson's Bay Company had an effect on the company's ability to carry out document repairs. Data collection methods included reviews of published material, archival records of the Hudson's Bay Company, and semi-structured interviews. The study found that the Hudson's Bay Company's commitment to operating a modern archives service in accordance with accepted archive administration practices had a substantial effect on its ability to carry out document repairs. The principled approach to repair, as practiced by the Public Record Office, was a major influence. A review of secondary sources placed this development squarely within the context of archival developments in 20th century England. Overall, the thesis findings add to the growing conversation about conservation history in England, in particular, archive conservation history as it occurred outside of the Public Record Office in the 20th century, by discussing how some methods of repair that were devised, adopted and extended by the Public Record Office in the 19th and 20th centuries were adopted and applied in the 20th century by a well-established business corporation.
Resumo:
The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.
Resumo:
Brain derived neurotrophic factor (BDNF) is a member of the family of neurotrophins and binds to the tropomyosin-related kinase B (TrkB) receptor. Like other neurotrophic factors, BDNF is involved in the development and differentiation of neurons. Recently, studies have suggested important roles for BDNF in the regulation of energy homeostasis. The paraventricular nucleus (PVN) is critical for normal energy balance contains high levels of both BDNF and TrkB mRNA. Studies have shown that microinjections of BDNF into the PVN increase energy expenditure, suggesting BDNF plays a role in energy homeostasis through direct actions in this hypothalamic nucleus. We used male Sprague-Dawley rats to perform whole-cell current-clamp experiments from PVN neurons in slice preparation. BDNF was bath applied at a concentration of 2nM and caused depolarizations in 54% of neurons (n = 25; mean change in membrane potential: 8.9 ± 1.2 mV), hyperpolarizations in 23% (n = 11; mean change in membrane potential: -6.7 ± 1.4 mV), while the remaining cells tested were unaffected. Previous studies showing effects of BDNF on γ-aminobutyric acid type A (GABAA) mediated neurotransmission in PVN led us to examine if these BDNF-mediated changes in membrane potential were maintained in the presence of tetrodotoxin (TTX) sodium channel blocker (N = 9; 56% depolarized, 22% hyperpolarized, 22% non-responders) and bicuculline (GABAA antagonist) (N = 12; 42% depolarized, 17% hyperpolarized, 41% non-responders), supporting the conclusion that these effects on membrane potential were postsynaptic. We also evaluated the effects of BDNF on these neurons across varying physiologically relevant extracellular glucose concentrations. At 10 mM 23% (n = 11; mean: -6.7 ± 1.4 mV) of PVN neurons hyperpolarized in response to BDNF treatment, whereas at 0.2 mM glucose, 71% showed hyperpolarizing effects (n = 12; mean: -6.3 ± 2.8 mV). Our findings reveal that BDNF has direct impacts on PVN neurons and that these neurons are capable of integrating multiple sources of metabolically relevant input. Our analysis regarding glucose concentrations and their effects on these neurons’ response to other metabolic signals emphasizes the importance of using physiologically relevant conditions for study of central pathways involved in the regulation of energy homeostasis.
Resumo:
The Fes protein tyrosine kinase is abundantly expressed in phagocytic immune cells, including tumor associated macrophages. Fes knockout mice (fes-/-) display enhanced sensitivity to LPS, and this was shown to be associated with increased NF-κB signaling and TNFα production from fes-/- macrophages. Interestingly, tumor onset in the mouse mammary tumor virus (MMTV-Neu) transgenic mouse model of breast cancer is significantly delayed in fes-/- mice, and this was associated with increased frequency of CD11b+ myeloid and CD3+ T cells in the premalignant mammary glands. Recent studies have also implicated Fes in cross-talk between MHC-I and the NF-κB and IRF-3 pathways in macrophages. Signal 3, the production of inflammatory cytokines and Type I interferons downstream of NF-κB and IRF-3 pathways in antigen presenting cells, is considered an important component of T-cell activation, after engagement of T cell receptor by MHC presented antigen (Signal 1) and co-receptors by their ligands (Signal 2). Using a lymphocytic choriomeningitis virus (LCMV) model of immune activation, I show that LPS stimulated fes-/- macrophages promote more robust activation of LCMV antigenspecific CD8+ T cells than wild type macrophages (fes+/+). Furthermore, LPS stimulated fes-/- macrophages showed increased phosphorylation of NF-B and IRF-3. I also showed that Fes colocalizes with MHC-I in dynamic vesicular structures within macrophages. These observations are consistent with a model where Fes regulates Signal 3 in antigen presenting cells through roles in cross-talk between MHC-I and the NF-kB and IRF-3 signaling pathways. This suggests that Fes plays an immune checkpoint role at the level of Signal 3, and that Fes inhibition could promote tumor immunity through increased Signal 3 driven T cell activation.
Resumo:
In order for mammalian fertilization to transpire, spermatozoa must transit through the female reproductive tract and penetrate the outer investments of the oocyte: the cumulus oophorus and the zona pellucida. In order to penetrate the oocyte, spermatozoa must undergo the acrosome reaction. The acrosome reaction results in the exposure of the inner acrosomal membrane (IAM) and proteins that coat it to the extracellular environment. After the acrosome reaction, the IAM becomes the leading edge of spermatozoa undergoing progressive movement. Thus the enzymes which effect lysis of the oocyte investments ought to be located on the IAM. An objective of this study was to identify and characterize enzymatic activity detected on the IAM and provide evidence that they play a role in fertilization. This study also describes procedures for fractionating spermatozoa and isolating the IAM and proteins on its intra- and extra-vesicular surfaces, and describes their development during male gametogenesis. Since the IAM is exposed to the extracellular environment and oviductal milieu after the acrosome reaction, this study also sought to characterize interactions and relationships between factors in the oviductal environment and the enzymes identified on the IAM. The data presented provide evidence that MMP2 and acrosin are co-localized on the IAM, originate from the Golgi apparatus in gametogenesis, and suggest they cooperate in their function. Their localization and results of in vitro fertilization suggests they have a function in zona pellucida penetration. The data also provide evidence that plasminogen, originating from the oviductal epithelium and/or cumulus-oocyte complex, is present in the immediate environment of sperm-egg initial contact and penetration. Additionally, plasminogen interacts with MMP2 and enhances its enzymatic action on the IAM. The data also provide evidence that MMP2 has an important function in penetration of the cumulus oophorus. Holistically, this thesis provides evidence that enzymes on the IAM, originating from the Golgi apparatus in development, have an important function in penetration of the outer investments of the oocyte, and are aided in penetration by plasminogen in the female reproductive tract.
Resumo:
Dense deployment of wireless local area network (WLAN) access points (APs) is an important part of the next generation Wi-Fi and standardization (802.11ax) efforts are underway. Increasing demand for WLAN connectivity motivates such dense deployments, especially in geographical areas with large numbers of users, such as stadiums, large enterprises, multi-tenant buildings, and urban cities. Although densification of WLAN APs guarantees coverage, it is susceptible to increased interference and uncoordinated association of stations (STAs) to APs, which degrade network throughput. Therefore, to improve network throughput, algorithms are proposed in this thesis to optimally coordinate AP associations in the presence of interference. In essence, coordination of APs in dense WLANs (DWLANs) is achieved through coordination of STAs' associations with APs. While existing approaches suggest tuning of APs' beacon powers or using transmit power control (TPC) for association control, here, the signal-to-interference-plus-noise ratio (SINRs) of STAs and the clear channel assessment (CCA) threshold of the 802.11 MAC protocol are employed. The proposed algorithms in this thesis enhance throughput and minimize coverage holes inherent in cell breathing and TPC techniques by not altering the transmit powers of APs, which determine cell coverage. Besides uncoordinated AP associations, unnecessary frequent transmission deferment is envisaged as another problem in DWLANs due to the clear channel assessment aspect of the carrier sensing multiple access collision avoidance (CSMA/CA) scheme in 802.11 standards and the short spatial reuse distance between co-channel APs. To address this problem in addition to AP association coordination, an algorithm is proposed for CCA threshold adjustment in each AP cell, such that CCA threshold used in one cell mitigates transmission deferment in neighboring cells. Performance evaluation reveals that the proposed association optimization algorithms achieve significant gain in throughput when compared with the default strongest signal first (SSF) association scheme in the current 802.11 standard. Also, further gain in throughput is observed when the CCA threshold adjustment is combined with the optimized association. Results show that when STA-AP association is optimized and CCA threshold is adjusted in each cell, throughput improves. Finally, transmission delay and the number of packet re-transmissions due to collision and contention significantly decrease.
Resumo:
Dendritic cells (DCs) secrete cytokines such as interleukin-23 (IL-23) when stimulated with certain Toll-like receptor (TLR) agonists and infected with pathogens such as P. aeruginosa. IL- 23 is a proinflammatory cytokine that plays a critical role in the proliferation and differentiation of the IL-17 producing Th17- CD4 T helper cells. The lack of efficient cytokine production from antigen-presenting cells, such as DCs, can impact CD4 differentiation and thus impair the immune responses against pathogens. Clearance of some bacterial infections, such as Klebsiella pneumonia and Listeria monocytogenes has been shown to be dependent on the induction of IL-23 and therefore, deregulation of these cytokines as a direct result of virus infection may impede immune responses to secondary infections. Here, an inhibition of TLR ligand or P. aeruginosa-induced IL- 23 expression in Lymphocytic Choriomeningitis Virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs) has been demonstrated, indicating that an important function of these cells is disrupted during virus/bacterial coinfection. While production of TNF-α was unaffected in LPS stimulated cells, TNF-α was significantly inhibited in bacterium infected cells by LCMV. Type I IFN in LPS or LCMV infected cell was not detected and therefore, ruling out the possibility of cytokine suppression by Type I IFN. The production of IL-10 was high in BMDCs infected with LCMV and stimulated with LPS or bacteria. Analysis of multiple cytokines produced in this coinfection model demonstrated that LCMV infection impacts specific cytokine production upon LPS or bacterium infection, which may be important for bacterial clearance. This data is important for future immunotherapy use in viral/bacterial coinfection scenarios.
Resumo:
Abnormal maternal inflammation during pregnancy is linked to complications such as preeclampsia and fetal growth restriction. There is growing evidence that insulin resistance is also associated with a heightened inflammatory state, and is linked to pregnancy complications such as gestational diabetes. This study tested the hypothesis that abnormal inflammation during pregnancy is causally linked to elevations in blood glucose and insulin resistance. To induce a state of abnormal systemic inflammation, bacterial lipopolysaccharide (LPS) was administered to pregnant rats on gestational days (GD) 13.5-16.5. Dams treated with LPS exhibited an abnormal immune response characterized by an elevation in white blood cells, which was linked to reduced fetal weight and increased glucose levels over pregnancy. Abnormal inflammation is characterized by increased levels of circulating pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF) and interleukin-6, which contribute to insulin resistance by inhibiting the insulin signalling pathway. TNF in particular induces a serine phosphorylation (pSer307) of insulin receptor substrate 1 (IRS-1). In our model, insulin resistance was assessed by measuring the extent of pSer307 of IRS-1 and total IRS-1 expression in skeletal muscle, as well as changes in metabolic parameters and pancreas tissue morphology associated with insulin resistance. LPS-treated dams exhibited a significant reduction in IRS-1 expression, elevation in fasting glucose levels, and reduction in insulin sensitivity indices. There were also biologically relevant increases in fasting plasma insulin levels and insulin resistance indices, but not pSer307 of IRS-1 and pancreatic islet size. To determine whether inflammation plays a role in reducing insulin signalling and the other changes associated with LPS administration, etanercept, a TNF antagonist, was administered on GDs 13.5 and 15.5 prior to LPS injections. With the exception of IRS-1 expression, in rats treated with etanercept all of the measured parameters remained at the levels observed in saline controls, indicating a link between abnormal inflammation and insulin resistance. The results of this study support the practice of monitoring the inflammatory conditions of the mother prior to and during pregnancy, and support further investigation into the potential use of anti-inflammatory agents during pregnancy in women at risk of insulin resistance and gestational diabetes.