860 resultados para Population Genetic Structure


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on results of field observations in August 1998, July 2000, and August 2001 composition and quantitative distribution of coccolithophorids in the middle part of the Eastern Bering Sea shelf between 56°052'N and 59°019'N was characterized. Emiliania huxleyi abundance, biomass, and population structure as well as role of species in the coccolithophorid community and phytoplankton as a whole were evaluated. Abundance of the species in the upper mixed layer in bloom areas was 1-3 mln cells/l and biomass made up 30-75 mg C/m**3. E. huxleyi share in total phytoplankton numbers and biomass at that reached 98% and 84% respectively. Significant spatial heterogeneity of E. huxleyi, quantitative distribution and population size structure, as well as asynchronism in population development in neighboring parts of the bloom area were shown. The time period, during which population structure in certain part of the area shifts from domination of juvenile cells without coccoliths to a phase of active detritus formation with dying coccolithophorid cells involved, may be estimated as two weeks. A conclusion is made that after anomalous E. huxleyi bloom in 1997 mass development of coccolithophorids became a characteristic feature of phytoplankton community's seasonal succession in the middle part of the Eastern Bering Sea shelf.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Population genetics of two species of mass copepods Undinula darwini and Calanus australis, with different range types, is investigated. Both species exhibit considerable genetic diversity, especially C. australis (observed heterozygoticity = 0.36), which inhabits a variable biotope in the zone of the Peru current. Samples of both species exhibited highly significant genetic heterogeneity as well as heterozygote deficiency compared with the situation expected from the Hardy-Weinberg law. Contribution of distance isolation to genetic differentiation of populations is estimated. Gene drift is discussed as a source of heterogeneity in populations of planktic copepods. Possible aspects of population genetic research on marine plank-tic crustaceans are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Georgia region supports a large biomass of krill that is subject to high interannual variability. The apparent lack of a locally self-maintaining krill population at South Georgia means that understanding the mechanism underlying these observed population characteristics is essential to successful ecosystem-based management of krill fishery in the region. Krill acoustic-density data from surveys conducted in the early, middle and late period of the summers of 2001 to 2005, together with krill population size structure over the same period from predator diet data, were used with a krill population dynamics model to evaluate potential mechanisms behind the observed changes in krill biomass. Krill abundance was highest during the middle of the summer in 3 years and in the late period in 2 years; in the latter there was evidence that krill recruitment was delayed by several months. A model scenario that included empirically derived estimates of both the magnitude and timing of recruitment in each year showed the greatest correlation with the acoustic series. The results are consistent with a krill population with allochthonous recruitment entering a retained adult population; i.e. oceanic transport of adult krill does not appear to be the major factor determining the dynamics of the adult population. The results highlight the importance of the timing of recruitment, especially where this could introduce a mismatch between the peak of krill abundance and the peak demand from predators, which may exacerbate the effects of changes in krill populations arising from commercial harvesting and/or climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pumas are one of the most studied terrestrial mammals because of their widespread distribution, substantial ecological impacts, and conflicts with humans. Extensive efforts, often employing genetic methods, are undertaken to manage this species. However, the comparison of population genetic data is difficult because few of the microsatellite loci chosen are shared across research programs. Here, we describe the development of PumaPlex, a high-throughput assay to genotype 25 single nucleotide polymorphisms in pumas. We validated PumaPlex in more than 700 North American pumas (Puma concolor couguar), and demonstrated its ability to generate reproducible genotypes and accurately identify individuals. Furthermore, we compared PumaPlex with traditional genotyping of 12 microsatellite loci in fecal DNA samples and found that PumaPlex produced significantly more genotypes with fewer false alleles. PumaPlex promotes the cross-laboratory comparison of genotypes, is easily expandable in the future, and is a valuable tool for the genetic monitoring and management of North American puma populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En el presente trabajo se ha llevado a cabo un estudio de la biodiversidad del frijol común (Phaseolus vulgaris L.) en Honduras, que es el segundo de los cultivos de granos básicos en importancia. Dicho estudio se ha realizado mediante una caracterización agromorfológica, molecular y ecogeográfica en una selección de 300 accesiones conservadas en el banco de germoplasma ubicado en la Escuela Agrícola Panamericana (EAP) El Zamorano, y que se colectaron en 13 departamentos del país durante el periodo de 1990 a 1994. Estas accesiones fueron colectadas cuatro años antes del acontecimiento del huracán Mitch, el cual a su paso afectó al 96% del área total cultivable en su momento, lo cual nos hace considerar que la biodiversidad de razas locales (landraces) de frijol común existentes in situ fueron severamente afectadas. Los trabajos dirigidos a analizar la biodiversidad de razas locales de frijol común en Honduras son escasos, y este trabajo se constituye como el primero que incluye una amplia muestra a ser estudiada a través de una caracterización en tres aspectos complementarios (agromorfológico, molecular y ecogeográfico). Se evaluaron 32 caracteres agromorfológicos, 12 cuantitativos y 20 cualitativos, en distintas partes de la planta. Se establecieron las correlaciones entre los caracteres agromorfológicos y se elaboró un dendrograma con los mismos, en el que se formaron ocho grupos, en parte relacionados principalmente con los colores y tamaños de la semilla. Mediante el análisis de componentes principales se estudiaron los caracteres de más peso en cada uno de los tres primeros componentes. Asimismo, se estudiaron las correlaciones entre caracteres, siendo las más altas la longitud y anchura de la hoja, días a madurez y a cosecha y longitud y peso de semilla. Por otra parte, el mapa de diversidad agromorfológica mostró la existencia de tres zonas con mayor diversidad: en el oeste (en los departamentos de Santa Bárbara, Lempira y Copán), en el centro-norte (en los departamentos de Francisco Morazán, Yoro y Atlántida) y en el sur (en el departamento de El Paraíso y al sur de Francisco Morazán). Para la caracterización molecular partimos de 12 marcadores de tipo microsatélite, evaluados en 54 accesiones, que fueron elegidas por constituir grupos que compartían un mismo nombre local. Finalmente, se seleccionaron los cuatro microsatélites (BM53, GATS91, BM211 y PV-AT007) que resultaron ser más polimórficos e informativos para el análisis de las 300 accesiones, con los que se detectaron un total de 119 alelos (21 de ellos únicos o privados de accesión) y 256 patrones alélicos diferentes. Para estudiar la estructura y relaciones genéticas en las 300 accesiones se incluyeron en el análisis tres controles o accesiones de referencia, pertenecientes dos de ellas al acervo genético Andino y una al Mesoamericano. En el dendrograma se obtuvieron 25 grupos de accesiones con idénticas combinaciones de alelos. Al comparar este dendrograma con el de caracteres agromorfológicos se observaron diversos grupos con marcada similitud en ambos. Un total de 118 accesiones resultaron ser homogéneas y homocigóticas, a la vez que representativas del grupo de 300 accesiones, por lo que se analizaron con más detalle. El análisis de la estructura genética definió la formación de dos grupos, supuestamente relacionados con los acervos genéticos Andino (48) y Mesoamericano (61), y un reducido número de accesiones (9) que podrían tener un origen híbrido, debido a la existencia de un cierto grado de introgresión entre ambos acervos. La diferenciación genética entre ambos grupos fue del 13,3%. Asimismo, 66 de los 82 alelos detectados fueron privados de grupo, 30 del supuesto grupo Andino y 36 del Mesoamericano. Con relación al mapa de diversidad molecular, presentó una distribución bastante similar al de la diversidad agromorfológica, detectándose también las zonas de mayor diversidad genética en el oeste (en los departamentos de Lempira y Santa Bárbara), en el centro-norte (en los departamentos de Yoro y Atlántida) y en el sur (en el departamento de El Paraíso y al sur de Francisco Morazán). Para la caracterización ecogeográfica se seleccionaron variables de tipo bioclimático (2), geofísico (2) y edáfico (8), y mediante el método de agrupamiento de partición alrededor de los medoides, la combinación de los grupos con cada uno de los tres tipos de variables definió un total de 32 categorías ecogeográficas en el país, detectándose accesiones en 16 de ellas. La distribución de las accesiones previsiblemente esté relacionada con la existencia de condiciones más favorables al cultivo de frijol. En el mapa de diversidad ecogeográfica, nuevamente, se observaron varias zonas con alta diversidad tanto en el oeste, como en el centro-norte y en el sur del país. Como consecuencia del estudio realizado, se concluyó la existencia de una marcada biodiversidad en el material analizado, desde el punto de vista tanto agromorfológico como molecular. Por lo que resulta de gran importancia plantear la conservación de este patrimonio genético tanto ex situ, en bancos de germoplasma, como on farm, en las propias explotaciones de los agricultores del país, siempre que sea posible. ABSTRACT In the present work we have carried out a study of the biodiversity of the common bean (Phaseolus vulgaris L) in Honduras, which is the second of the basic grain crops in importance. This study was conducted through agro-morphological, molecular and ecogeographical characterization of a selection of 300 accessions conserved in the genebank located in the ‘Escuela Agrícola Panamericana (EAP) El Zamorano’ that were collected in 13 departments of the country during the 1990 to 1994 period. These accessions were collected four years before the occurrence of Mitch hurricane, which affected 96% of the total cultivable area at the time, which makes us to consider that the biodiversity of local landraces of common bean existing in situ were severely affected. The work aimed to analyze the biodiversity of local races of common bean in Honduras are scarce, and this work constitutes the first to include a large sample to be studied through a characterization on three complementary aspects (agromorphological, molecular and ecogeographical). Thirty two agromorphological characters, 12 quantitative and 20 qualitative, in various parts of the plant were evaluated. Correlations between agromorphological characters were established and a dendrogram with them was constructed, in which eight groups were formed, in part mainly related to the colors and sizes of the seeds. By principal component analysis the characters with more weight in each of the first three components were studied. Also, correlations between characters were studied, the highest of them being length and leaf width, days to maturity and harvest, and seed length and weight. Moreover, the map of agromorphological diversity showed the existence of three areas with more diversity: the west (departments of Santa Barbara, Copan and Lempira), the center-north (departments of Francisco Morazán, Yoro and Atlántida) and the south (department of El Paraiso and south of Francisco Morazán). For molecular characterization we started with 12 microsatellite markers, evaluated in 54 accessions, which were chosen because they formed groups that shared the same local name. Finally, four microsatellites (BM53, GATS91, BM211 and PV-AT007) were selected for the analysis of 300 accessions, since they were the most polymorphic and informative. They gave a total of 119 alleles (21 of them unique or private for the accession) and 256 different allelic patterns. To study the structure and genetic relationships in the 300 accessions, three controls or accessions of reference were included in the analysis: two of them belonging to the Andean gene pool and one to the Mesoamerican. In the dendrogram, 25 accession groups with identical allele combinations were obtained. Comparing this dendrogram to the obtained with agromorphological characters, several groups with marked similarity in both were observed. A total of 118 accessions were homozygous and homogeneous, while representing the group of 300 accessions, therefore they were analyzed in more detail. The analysis of the genetic structure defined the formation of two groups, supposedly related to the Andean (48) and the Mesoamerican (61) gene pools, and a small number of accessions (9) which may have a hybrid origin, due to the existence of some degree of introgression between both gene pools. Genetic differentiation between both groups was 13.3%. Also, 66 of the 82 detected alleles were private or unique for the group, 30 of the supposed Andean group and 36 of the Mesoamerican. With relation to the map of molecular diversity, it showed a quite similar distribution to the agromorphological, also detecting the areas of greatest genetic diversity in the west (departments of Lempira and Santa Bárbara), in the center-north (departments Atlántida and Yoro) and in the south (departments of El Paraíso and south of Francisco Morazán). For the ecogeographical characterization, bioclimatic (2), geophysical (2) and edaphic (8) variables were selected, and by the method of clustering partition around the medoids, the combination of the groups to each of the three types of variables defined a total of 32 ecogeographical categories in the country, having accessions in 16 of them. The distribution of accessions is likely related to the existence of more favorable conditions for the cultivation of beans. The map of ecogeographical diversity, again, several areas with high diversity both in the west and in the center-north and in the south of the country were observed. As a result of study, the existence of marked biodiversity in the analyzed material was concluded, both from the agromorphological and from the molecular point of view. Consequently it is very important to propose the conservation of this genetic heritage both ex situ, in genebanks, as on farm, in the holdings of the farmers of the country, whenever possible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recolonization of Europe by forest tree species after the last glaciation is well documented in the fossil pollen record. This spread may have been achieved at low densities by rare events of long-distance dispersal, rather than by a compact wave of advance, generating a patchy genetic structure through founder effects. In long-lived oak species, this structure could still be discernible by using maternally transmitted genetic markers. To test this hypothesis, a fine-scale study of chloroplast DNA (cpDNA) variability of two sympatric oak species was carried out in western France. The distributions of six cpDNA length variants were analyzed at 188 localities over a 200 × 300 km area. A cpDNA map was obtained by applying geostatistics methods to the complete data set. Patches of several hundred square kilometers exist which are virtually fixed for a single haplotype for both oak species. This local systematic interspecific sharing of the maternal genome strongly suggests that long-distance seed dispersal events followed by interspecific exchanges were involved at the time of colonization, about 10,000 years ago.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most demographic data indicate a roughly exponential increase in adult mortality with age, a phenomenon that has been explained in terms of a decline in the force of natural selection acting on age-specific mortality. Scattered demographic findings suggest the existence of a late-life mortality plateau in both humans and dipteran insects, seemingly at odds with both prior data and evolutionary theory. Extensions to the evolutionary theory of aging are developed which indicate that such late-life mortality plateaus are to be expected when enough late-life data are collected. This expanded theory predicts late-life mortality plateaus, with both antagonistic pleiotropy and mutation accumulation as driving population genetic mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the evolutionary dynamics of three of the best-studied plant nuclear multigene families. The data analyzed derive from the genes that encode the small subunit of ribulose-1,5-bisphosphate carboxylase (rbcS), the gene family that encodes the enzyme chalcone synthase (Chs), and the gene family that encodes alcohol dehydrogenases (Adh). In addition, we consider the limited evolutionary data available on plant transposable elements. New Chs and rbcS genes appear to be recruited at about 10 times the rate estimated for Adh genes, and this is correlated with a much smaller average gene family size for Adh genes. In addition, duplication and divergence in function appears to be relatively common for Chs genes in flowering plant evolution. Analyses of synonymous nucleotide substitution rates for Adh genes in monocots reject a linear relationship with clock time. Replacement substitution rates vary with time in a complex fashion, which suggests that adaptive evolution has played an important role in driving divergence following gene duplication events. Molecular population genetic studies of Adh and Chs genes reveal high levels of molecular diversity within species. These studies also reveal that inter- and intralocus recombination are important forces in the generation allelic novelties. Moreover, illegitimate recombination events appear to be an important factor in transposable element loss in plants. When we consider the recruitment and loss of new gene copies, the generation of allelic diversity within plant species, and ectopic exchange among transposable elements, we conclude that recombination is a pervasive force at all levels of plant evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The maize genome is replete with chromosomal duplications and repetitive DNA. The duplications resulted from an ancient polyploid event that occurred over 11 million years ago. Based on DNA sequence data, the polyploid event occurred after the divergence between sorghum and maize, and hence the polyploid event explains some of the difference in DNA content between these two species. Genomic rearrangement and diploidization followed the polyploid event. Most of the repetitive DNA in the maize genome is retrotransposable elements, and they comprise 50% of the genome. Retrotransposon multiplication has been relatively recent—within the last 5–6 million years—suggesting that the proliferation of retrotransposons has also contributed to differences in DNA content between sorghum and maize. There are still unanswered questions about repetitive DNA, including the distribution of repetitive DNA throughout the genome, the relative impacts of retrotransposons and chromosomal duplication in plant genome evolution, and the hypothesized correlation of duplication events with transposition. Population genetic processes also affect the evolution of genomes. We discuss how centromeric genes should, in theory, contain less genetic diversity than noncentromeric genes. In addition, studies of diversity in the wild relatives of maize indicate that different genes have different histories and also show that domestication and intensive breeding have had heterogeneous effects on genetic diversity across genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Differences in the frequency with which offspring are produced asexually, through self-fertilization and through sexual outcrossing, are a predominant influence on the genetic structure of plant populations. Selfers and asexuals have fewer genotypes within populations than outcrossers with similar allele frequencies, and more genetic diversity in selfers and asexuals is a result of differences among populations than in sexual outcrossers. As a result of reduced levels of diversity, selfers and asexuals may be less able to respond adaptively to changing environments, and because genotypes are not mixed across family lineages, their populations may accumulate deleterious mutations more rapidly. Such differences suggest that selfing and asexual lineages may be evolutionarily short-lived and could explain why they often seem to be of recent origin. Nonetheless, the origin and maintenance of different reproductive modes must be linked to individual-level properties of survival and reproduction. Sexual outcrossers suffer from a cost of outcrossing that arises because they do not contribute to selfed or asexual progeny, whereas selfers and asexuals may contribute to outcrossed progeny. Selfing and asexual reproduction also may allow reproduction when circumstances reduce opportunities for a union of gametes produced by different individuals, a phenomenon known as reproductive assurance. Both the cost of outcrossing and reproductive assurance lead to an over-representation of selfers and asexuals in newly formed progeny, and unless sexual outcrossers are more likely to survive and reproduce, they eventually will be displaced from populations in which a selfing or asexual variant arises.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drosophila melanogaster from Zimbabwe and nearby regions shows strong but asymmetric sexual isolation from its cosmopolitan counterparts. By creating stable chromosome-substitution lines, earlier studies were able to show that the two major autosomes have very large effects on both male mating success and female mating preference. In this study, we genetically dissect this sexual isolation by recombination analysis between a whole-chromosome substitution line (which carries a Zimbabwe-derived third chromosome) and a strain with seven visible markers on that chromosome. Four loci are responsible for male mating success and three others are found to control female mating preference. Because male and female traits are not closely linked, their strong association among isofemale lines is most likely a reflection of sexual selection in nature. The results suggest that a large number of behavioral loci may evolve concurrently in the incipient stage of speciation before other aspects of reproductive isolation (such as hybrid sterility) have become evident. The results shed light on the population genetic processes underlying the formation of nascent species, as well as modes of speciation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coccidioides immitis, cause of a recent epidemic of "Valley fever" in California, is typical of many eukaryotic microbes in that mating and meiosis have yet to be reported, but it is not clear whether sex is truly absent or just cryptic. To find out, we have undertaken a population genetic study using PCR amplification, screening for single-strand conformation polymorphisms, and direct DNA sequencing to find molecular markers with nucleotide-level resolution. Both population genetic and phylogenetic analyses indicate that C. immitis is almost completely recombining. To our knowledge, this study is the first to find molecular evidence for recombination in a fungus for which no sexual stage has yet been described. These results motivate a directed search for mating and meiosis and illustrate the utility of single-strand conformation polymorphism and sequencing with arbitrary primer pairs in molecular population genetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To classify Listeria monocytogenes using taxonomic characters derived from the rRNA operons and their flanking sequences, we studied a sample of 1346 strains within the taxon. DNA from each strain was digested with a restriction endonuclease, EcoRI. The fragments were separated by gel electrophoresis, immobilized on a membrane, and hybridized with a labeled rRNA operon from Escherichia coli. The pattern of bands, positions, and intensities of hybridized fragments were electronically captured. Software was used to normalize the band positions relative to standards, scale the signal intensity, and reduce the background so that each strain was reproducibly represented in a data base as a pattern. With these methods, L. monocytogenes was resolved into 50 pattern types differing in the length of at least one polymorphic fragment. Pattern types representing multiple strains were recorded as the mathematical average of the strain patterns. Pattern types were arranged by size polymorphisms of assigned rRNA regions into subsets, which revealed the branching genetic structure of the species. Subtracting the polymorphic variants of a specific assigned region from the pattern types and averaging the types within each subset resulted in reduced sets of conserved fragments that could be used to recognize strains of the species. Pattern types and reduced sets of conserved fragments were conserved among different strains of L. monocytogenes but were not observed in total among strains of other species.