907 resultados para Polyacrylamide. Critical overlap concentration. Potentiometry. Molecular weight. Degree of hydrolysis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dental fluorosis is a developmental disturbance of dental enamel, caused by successive exposures to high concentrations of fluoride during tooth development, leading to enamel with lower mineral content and increased porosity. The severity of dental fluorosis depends on when and for how long the overexposure to fluoride occurs, the individual response, weight, degree of physical activity, nutritional factors and bone growth. The risk period for esthetic changes in permanent teeth is between 20 and 30 months of age. The recommended level for daily fluoride intake is 0.05 - 0.07 mg F/Kg/day, which is considered of great help in preventing dental caries, acting in remineralization. A daily intake above this safe level leads to an increased risk of dental fluorosis. Currently recommended procedures for diagnosis of fluorosis should discriminate between symmetrical and asymmetrical and/or discrete patterns of opaque defects. Fluorosis can be prevented by having an adequate knowledge of the fluoride sources, knowing how to manage this issue and therefore, avoid overexposure.
Resumo:
Purpose: This study evaluated the effect of bleaching gel containing 10%, 15% and 20% carbamide peroxide (CP) on the bond strength of dental enamel or dentin and resin composite restorations.Methods: The buccal surfaces of 12 bovine tooth crowns were conditioned with 37% phosphoric acid, and the adhesive resin Single Bond 2 and the resin composite Filtek Z350 were used to perform the restorations. The blocks were sectioned to obtain bar specimens. Each specimen group (enamel-E, dentin-D) was divided into four subgroups (n=15): S-artificial saliva; 10-10% CP bleaching; 15-15% CP bleaching; 20-20% CP bleaching. CP was applied for six hours daily for two weeks. The specimens were submitted to the a test in a universal testing machine. The data were analyzed by one-way ANOVA and the Tukey post-hoc test and a correlation analysis (r) was performed.Results: For Group E, the mean value (+/- standard-deviation) was 21.86 (+/- 6.03)a, 18.91 (+/- 8.31)ab, 15.43 (+/- 7.44)b and 10.6 (+/- 4.94)c for ES, E10, E15 and E20, respectively. For Group D, the alpha values were 34.73 (+/- 4.68)a, 35.12 (+/- 13.43)a, 29.67 (+/- 6.84)ab and 24.56 (+/- 6.54)b for DS, D10, D15 and D20, respectively. A negative correlation between the CP concentration and mean values was observed for both the enamel (r=-0.95) and dentin (r=-0.85) groups.Conclusion: In the current study, the bond strength of the restoration to enamel and the restoration to dentin were influenced by the application of CP and was dependent on the CP concentration in the bleaching gel.
Resumo:
Purpose: This study evaluated the degree of conversion (DC) of four indirect resin composites (IRCs) with various compositions processed in different polymerization units and investigated the effect of thermal aging on the flexural strength and Vicker's microhardness.Materials and Methods: Specimens were prepared from four IRC materials, namely Gr 1: Resilab (Wilcos); Gr2: Sinfony (3M ESPE); Gr3: VITA VMLC (VITA Zahnfabrik); Gr4: VITA Zeta (VITA Zahnfabrik) using special molds for flexural strength test (N = 80, n = 10 per group) (25 x 2 x 2 mm(3), ISO 4049), for Vicker's microhardness test (N = 80, n = 10 per group) (5 x 4 mm(2)) and for DC (N = 10) using FT-Raman Spectroscopy. For both flexural strength and microhardness tests, half of the specimens were randomly stored in distilled water at 37 degrees C for 24 hours (Groups 1 to 4), and the other half (Groups 5 to 8) were subjected to thermocycling (5000 cycles, 5 to 55 +/- 1 degrees C, dwell time: 30 seconds). Flexural strength was measured in a universal testing machine (crosshead speed: 0.8 mm/min). Microhardness test was performed at 50 g. The data were analyzed using one-way and two-way ANOVA and Tukey's test (alpha = 0.05). The correlation between flexural strength and microhardness was evaluated with Pearson's correlation test (alpha = 0.05).Results: A significant effect for the type of IRC and thermocycling was found (p = 0.001, p = 0.001) on the flexural strength results, but thermocycling did not significantly affect the microhardness results (p = 0.078). The interaction factors were significant for both flexural strength and microhardness parameters (p = 0.001 and 0.002, respectively). Thermocycling decreased the flexural strength of the three IRCs tested significantly (p < 0.05), except for VITA Zeta (106.3 +/- 9.1 to 97.2 +/- 14 MPa) (p > 0.05) when compared with nonthermocycled groups. Microhardness results of only Sinfony were significantly affected by thermocycling (25.1 +/- 2.1 to 31 +/- 3.3 Kg/mm(2)). DC values ranged between 63% and 81%, and were not significantly different between the IRCs (p > 0.05). While a positive correlation was found between flexural strength and microhardness without (r = 0.309) and with thermocycling (r = 0.100) for VITA VMLC, negative correlations were found for Resilab under the same conditions (r = -0.190 and -0.305, respectively) (Pearson's correlation coefficient).Conclusion: Although all four IRCs presented nonsignificant DC values, flexural strength and microhardness values varied between materials with and without thermocycling.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The work describes the biocompatibility and biodegradation studies of anionic collagen membranes casted form collagen gels collagen, that were selective hydrolyzed at the carboxyamide groups, as a function of the degree of cross-links induced by glutaraldehyde. Independently from the degree of cross-links, all membranes studied were characterized by a similar inflammatory response, inversely dependent on glutaraldehyde reaction time, that decreased from the time of the implant. Cell alterations, mineralization or contact necrosis were not observed in any of the membranes studied. Rates for membrane tissue biodegradation were directly related to glutaraldehyde reaction time, and ranged from 30 to periods longer than 60 days, associated with good biocompatibility. Although other properties must be considered, their use in the treatment of periodontal diseases, the biological behavior observed with the 8 h GA cross-linked membrane suggests that, anionic collagen membrane described in this work may be of potential use, not only in association with guided tissue regeneration technique for periodontal tissue reconstruction, but also in other collagen biomaterial applications where controlled biodegradability is required. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
Thin films of perovskite-type materials such as PbTiO3, BaTiO3, (Pb,La)TiO3, (Pb, La)(ZrTi)O-3, KNbO3, and Pb(Mg,Nb)03 have been attracting great interest for applications like non-volatile memories, ultrasonic sensors and optical devices. Thin film should be epitaxially grown or at least highly textured since the properties of this anisotropic material depend on the crystallographic orientation. For optical devices, in particular, an epitaxial thin film without defects are essential to reduce optical propagation losses. Pb1-xLaxTiO3 (PLT) where x=0, 13 and 27% thin films were prepared by a chemical method (polymeric precursors method), and deposited by the spin coating technique onto substrates of SrTiO3 (STO) and LaAlO3 (LAO). The films were then beat treated at 500 degrees C in a controlled atmosphere of 0,. The orientation degree of the thin films was obtained from rocking curve technique, by means of X-ray difftaction analysis. A microstructural study revealed that the films were crack-free, homogeneous and have low roughness. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper reports a study of influence of Cr concentration on the electrical properties and microstructure of SnO2-based powders doped with Mn and Nb, prepared by an organic route (Pechini method). All the samples were compacted into discs and sintered at 1300 degrees C for 3h, resulting in ceramics with relative density varying between 78% and 98%. The powders were characterized by X-ray diffraction analysis. Impedance spectroscopy characterization indicated that the conductivity decreases as Cr concentration increases, probably due to Cr segregation at grain boundaries, which reduces grain size, increasing the number of resistive boundaries.
Resumo:
Methods of assessment of compost maturity are needed so the application of composted materials to lands will provide optimal benefits. The aim of the present paper is to assess the maturity reached by composts from domestic solid wastes (DSW) prepared under periodic and permanent aeration systems and sampled at different composting time, by means of excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR). EEM spectra indicated the presence of two different fluorophores centered, respectively, at Ex/Em wavelength pairs of 330/425 and 280/330 nm. The fluorescence intensities of these peaks were also analyzed, showing trends related to the maturity of composts. The contour density of EEM maps appeared to be strongly reduced with composting days. After 30 and 45 days of composting, FT-IR spectra exhibited a decrease of intensity of peaks assigned to polysaccharides and in the aliphatic region. EEM and FT-IR techniques seem to produce spectra that correlate with the degree of maturity of the compost. Further refinement of these techniques should provide a relatively rapid method of assessing the suitability of the compost to land application.
Resumo:
We present a fast procedure for scanning electron microscopy (SEM) analysis in which hexamethyldisilazane (HMDS) solvent, instead of the critical point drying, is used to remove liquids from a microbiological specimen. The results indicate that the HMDS solvent is suitable for drying samples of anaerobic cells for examination by SEM and does not cause cell structure disruption.