869 resultados para Police vehicles
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require threedimensional coupled vehicle-bridge models, wheree consideration of wheel to rail contact is a key aspect. Furthermore, an adequate evaluation of safety of rail traffic requires nonlinear models. A nonlinear coupled model is proposed here for vehicle-structure vertical and lateral dynamics. Vehicles are considered as fully three-dimensional multibody systems including gyroscopic terms and large rotation effects. The bridge structure is modeled by means of finite elements which may be of beam, shell or continuum type and may include geometric or material nonlinearities. The track geometry includes distributed track alignment irregularities. Both subsystems (bridge and vehicles) are described with coordinates in absolute reference frames, as opposed to alternative approaches which describe the multibody system with coordinates relative to the base bridge motion. The wheelrail contact employed is a semi-Hertzian model based on realistic wheel-rail profiles. It allows a detailed geometrical description of the contact patch under each wheel including multiple-point contact, flange contact and uplift. Normal and tangential stresses in each contact are integrated at each time-step to obtain the resultant contact forces. The models have been implemented within an existing finite element analysis software with multibody capabilities, Abaqus (Simulia Ltd., 2010). Further details of the model are presented in Antolín et al. (2012). Representative applications are presented for railway vehicles under lateral wind action on laterally compliant viaducts, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.
Resumo:
This research on odometry based GPS-denied navigation on multirotor Unmanned Aerial Vehicles is focused among the interactions between the odometry sensors and the navigation controller. More precisely, we present a controller architecture that allows to specify a speed specified flight envelope where the quality of the odometry measurements is guaranteed. The controller utilizes a simple point mass kinematic model, described by a set of configurable parameters, to generate a complying speed plan. For experimental testing, we have used down-facing camera optical-flow as odometry measurement. This work is a continuation of prior research to outdoors environments using an AR Drone 2.0 vehicle, as it provides reliable optical flow on a wide range of flying conditions and floor textures. Our experiments show that the architecture is realiable for outdoors flight on altitudes lower than 9 m. A prior version of our code was utilized to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012. The code will be released as an open-source ROS stack hosted on GitHub.
Resumo:
The analysis of the running safety of railway vehicles on viaducts subject to strong lateral actions such as cross winds requires coupled nonlinear vehicle-bridge interaction models, capable to study extreme events. In this paper original models developed by the authors are described, based on finite elements for the structure, multibody and finite element models for the vehicle, and specially developed interaction elements for the interface between wheel and rail. The models have been implemented within ABAQUS and have full nonlinear capabilities for the structure, the vehicle and the contact interface. An application is developed for the Ulla Viaduct, a 105 m tall arch in the Spanish high-speed railway network. The dynamic analyses allow obtaining critical wind curves, which define the running safety conditions for a given train in terms of speed of circulation and wind speed
Resumo:
The introduction of a homogeneous road charging system according to the Directive 2011/76/EU for the use of roads is still under development in most European Union (EU) member states. Spain, like other EU members, has been encouraged to introduce a charging system for Heavy Goods Vehicles (HGVs) throughout the country. This nationwide charge has been postponed because there are serious concerns about their advantages from an economic point of view. Within this context, this paper applies an integrated modeling approach to shape elastic trade coefficients among regions by using a random utility based multiregional Input- Output (RUBMRIO) approach and a road transport network model in order to determine regional distributive and substitutive economic effects by simulating the introduction of a distance-based charge (?/km) considering 7,053.8 kilometers of free highways linking the capitals of the Spanish regions. In addition, an in-depth analysis of interregional trade changes is developed to evaluate and characterize the role of the road charging approach in trade relations among regions and across freight intensive economic sectors. For this purpose, differences in trade relations are described and assessed between a base-case or ?do nothing? scenario and a road fee-charge setting scenario. The results show that the specific amount of the charge set for HGVs affect each region differently and to a different extent because in some regions the price of commodities and the Generalized Transport Cost will decrease its competiveness within the country.
Resumo:
The assessment on introducing Longer and Heavier Vehicles (LHVs) on the road freight transport demand is performed in this paper by applying an integrated modeling approach composed of a Random Utility-Based Multiregional Input-Output model (RUBMRIO) and a road transport network model. The approach strongly supports the concept that changes in transport costs derived from the LHVs allowance as well as the economic structure of regions have both direct and indirect effects on the road freight transport system. In addition, we estimate the magnitude and extent of demand changes in the road freight transportation system by using the commodity-based structure of the approach to identify the effect on traffic flows and on pollutant emissions over the whole network of Spain by considering a sensitivity analysis of the main parameters which determine the share of Heavy-Goods Vehicles (HGVs) and LHVs. The results show that the introduction of LHVs will strengthen the competitiveness of the road haulage sector by reducing costs, emissions, and the total freight vehicles required.
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
Aircraft tracking plays a key and important role in the Sense-and-Avoid system of Unmanned Aerial Vehicles (UAVs). This paper presents a novel robust visual tracking algorithm for UAVs in the midair to track an arbitrary aircraft at real-time frame rates, together with a unique evaluation system. This visual algorithm mainly consists of adaptive discriminative visual tracking method, Multiple-Instance (MI) learning approach, Multiple-Classifier (MC) voting mechanism and Multiple-Resolution (MR) representation strategy, that is called Adaptive M3 tracker, i.e. AM3. In this tracker, the importance of test sample has been integrated to improve the tracking stability, accuracy and real-time performances. The experimental results show that this algorithm is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant surrounding illumination, partial aircraft occlusion, blur motion, rapid pose variation and onboard mechanical vibration, low computation capacity and delayed information communication between UAVs and Ground Station (GS). To our best knowledge, this is the first work to present this tracker for solving online learning and tracking freewill aircraft/intruder in the UAVs.
Resumo:
In this paper, we consider the problem of autonomous navigation of multirotor platforms in GPS-denied environments. The focus of this work is on safe navigation based on unperfect odometry measurements, such as on-board optical flow measurements. The multirotor platform is modeled as a flying object with specific kinematic constraints that must be taken into account in order to obtain successful results. A navigation controller is proposed featuring a set of configurable parameters that allow, for instance, to have a configuration setup for fast trajectory following, and another to soften the control laws and make the vehicle navigation more precise and slow whenever necessary. The proposed controller has been successfully implemented in two different multirotor platforms with similar sensoring capabilities showing the openness and tolerance of the approach. This research is focused around the Computer Vision Group's objective of applying multirotor vehicles to civilian service applications. The presented work was implemented to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012, gaining two awards: the Special Award on "Best Automatic Performance - IMAV 2012" and the second overall prize in the participating category "Indoor Flight Dynamics - Rotary Wing MAV". Most of the code related to the present work is available as two open-source projects hosted in GitHub.
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
This paper presents a novel robust visual tracking framework, based on discriminative method, for Unmanned Aerial Vehicles (UAVs) to track an arbitrary 2D/3D target at real-time frame rates, that is called the Adaptive Multi-Classifier Multi-Resolution (AMCMR) framework. In this framework, adaptive Multiple Classifiers (MC) are updated in the (k-1)th frame-based Multiple Resolutions (MR) structure with compressed positive and negative samples, and then applied them in the kth frame-based Multiple Resolutions (MR) structure to detect the current target. The sample importance has been integrated into this framework to improve the tracking stability and accuracy. The performance of this framework was evaluated with the Ground Truth (GT) in different types of public image databases and real flight-based aerial image datasets firstly, then the framework has been applied in the UAV to inspect the Offshore Floating Platform (OFP). The evaluation and application results show that this framework is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant illumination, partial/full target occlusion, blur motion, rapid pose variation and onboard mechanical vibration, among others. To our best knowledge, this is the first work to present this framework for solving the online learning and tracking freewill 2D/3D target problems, and applied it in the UAVs.
Resumo:
This paper presents an adaptation of the Cross-Entropy (CE) method to optimize fuzzy logic controllers. The CE is a recently developed optimization method based on a general Monte-Carlo approach to combinatorial and continuous multi-extremal optimization and importance sampling. This work shows the application of this optimization method to optimize the inputs gains, the location and size of the different membership functions' sets of each variable, as well as the weight of each rule from the rule's base of a fuzzy logic controller (FLC). The control system approach presented in this work was designed to command the orientation of an unmanned aerial vehicle (UAV) to modify its trajectory for avoiding collisions. An onboard looking forward camera was used to sense the environment of the UAV. The information extracted by the image processing algorithm is the only input of the fuzzy control approach to avoid the collision with a predefined object. Real tests with a quadrotor have been done to corroborate the improved behavior of the optimized controllers at different stages of the optimization process.
Resumo:
Mice immunized with heat shock proteins (hsps) isolated from mouse tumor cells (donor cells) produce CD8 cytotoxic T lymphocytes (CTL) that recognize donor cell peptides in association with the major histocompatibility complex (MHC) class I proteins of the responding mouse. The CTL are induced apparently because peptides noncovalently associated with the isolated hsp molecules can enter the MHC class I antigen processing pathway of professional antigen-presenting cells. Using a recombinant heat shock fusion protein with a large fragment of ovalbumin covalently linked to mycobacterial hsp70, we show here that when the soluble fusion protein was injected without adjuvant into H-2b mice, CTL were produced that recognized an ovalbumin-derived peptide, SIINFEKL, in association with Kb. The peptide is known to arise from natural processing of ovalbumin in H-2b mouse cells, and CTL from the ovalbumin-hsp70-immunized mice and a highly effective CTL clone (4G3) raised against ovalbumin-expressing EL4 tumor cells (EG7-OVA) were equally effective in terms of the concentration of SIINFEKL required for half-maximal lysis in a CTL assay. The mice were also protected against lethal challenge with ovalbumin-expressing melanoma tumor cells. Because large protein fragments or whole proteins serving as fusion partners can be cleaved into short peptides in the MHC class I processing pathway, hsp fusion proteins of the type described here are promising candidates for vaccines aimed at eliciting CD8 CTL in populations of MHC-disparate individuals.
Resumo:
PCDD/F emissions from three light-duty diesel vehicles–two vans and a passenger car–have been measured in on-road conditions. We propose a new methodology for small vehicles: a sample of exhaust gas is collected by means of equipment based on United States Environmental Protection Agency (U.S. EPA) method 23A for stationary stack emissions. The concentrations of O2, CO, CO2, NO, NO2 and SO2 have also been measured. Six tests were carried out at 90-100 km/h on a route 100 km long. Two additional tests were done during the first 10 minutes and the following 60 minutes of the run to assess the effect of the engine temperature on PCDD/F emissions. The emission factors obtained for the vans varied from 1800 to 8400 pg I-TEQ/Nm3 for a 2004 model year van and 490-580 pg I-TEQ/Nm3 for a 2006 model year van. Regarding the passenger car, one run was done in the presence of a catalyst and another without, obtaining emission factors (330-880 pg I-TEQ/Nm3) comparable to those of the modern van. Two other tests were carried out on a power generator leading to emission factors ranging from 31 to 78 pg I-TEQ/Nm3. All the results are discussed and compared with literature.
Resumo:
Draft of a complaint against the boys in Croswell's neighborhood.