995 resultados para Physiology, Comparative.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

在青藏高原东部的亚高山针叶林区,如何尽快恢复这一生态脆弱地区的植被,改变生态环境恶化的趋势,是一个十分重要的课题。光一直被认为是植物种间相互替代,尤其是森林演替过程中植物相互替代或植被恢复中的关键环境要素之一。植物能否适应林冠下或林窗中异质的、或多变的光照条件,对其在林中的生存、分布、更新以及森林动态都是非常重要的。 本文以青藏高原东部亚高山针叶林的主要森林类型——岷江冷杉林群落的几种树苗为研究对象,采用实验生态学、生理及生物化学等方法,通过模拟针叶林不同大小林窗内光照强度的变化,在中国科学院茂县生态站内采用遮荫处理设置6个光照梯度(100、55、40、25、15与7%全光照),来研究具有不同喜光特性的植物对光强的响应与适应机制,其研究结果可为揭示亚高山针叶林的演替规律、以及人工林下幼苗的存活与定居提供科学依据,也能为苗木的生产与管理提供科学指导,尤其是对针阔树种在不同光强下的响应与适应的比较研究,能为如何将阔叶树种整合到人工针叶林中提供新的思路。 光强对植物生长的影响 光强对植物的生长具有重要作用,不同植物在各自适宜的光强梯度下才能生长良好。通过一个野外盆栽实验,来研究不同光强对植物生长的影响(第三章)。主要研究结果如下,低光强下植物株高/茎生物量增加,说明植物会将生物量更多用于高生长,以便有效地拦截光资源;在强光下,植物将生物量更多地向根部分配,使得植物在强光下能够吸收更多的水分,而避免干旱胁迫。 在第一个生长季节,以相对生长速率(RGR)表示,红桦和青榨槭在100%全光照下RGR最大,粗枝云杉在55%最大,岷江冷杉在25-40%下较好;然而,在第二个生长季节,2种阔叶树的相对生长速率(RGR)的适宜光强则变为25-55%,云杉为55-100%,而冷杉为25-100%。可见,从第一年到第二年,2种阔叶树苗更适宜在部分荫蔽的条件下生长;而2种针叶树苗对光的需求则逐渐增加,这可能是增加对根生物量相对投资的结果,因为以这种方式,强光下生长的针叶树幼苗更能保持其内部水分平衡,其生长不会因干旱胁迫而受到严重影响。另外,严重遮荫会引起冷杉幼苗死亡。 植物对光强的生理适应 植物可以通过自身形态和生理特征的调整,来发展不同的光能利用策略从而能够在林中共存。通过一个野外盆栽实验,研究了不同光强下生长的几种树苗的生理特征(第四章)对不同光强的响应与适应。结果显示:强光下,粗枝云杉和红桦的光合能力增加,而岷江冷杉和青榨槭在中度遮荫(25-55%)的条件下光合能力最大。植物叶氮和叶绿素含量增高,而光补偿点和暗呼吸速率降低,这些都是植物对低光环境的适应性反应;而强光下植物叶片和栅栏组织变厚,是对强光的一种保护性反应。 植物对光的可塑性反应 不同植物会表现出对光适应有利的生理和形态可塑性反应。本文对第三章、第四章的实验数据进行可塑性指数分析,来研究植物对光强的表型可塑性反应(第五章)。结果显示,生理特征调整是植物对不同光环境的主要适应途径。红桦和青榨槭的可塑性指数平均值要大于粗枝云杉和岷江冷杉,充分表明这2种阔叶树在生理和形态上较强的可塑性更有利于对光环境的适应,而具有比耐荫树种更强的适应能力。另外,2种针叶树相比,云杉的适应性更强。本研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。 植物的光抑制与防御 当植物叶片吸收了过多光能,会发生光抑制现象。植物对光抑制的敏感性及防御能力对其生长具有重要意义。本文通过两个野外盆栽实验,研究了生长在强光下(第六章)和变化光强下(第八章)植物的光抑制现象及其防御策略。结果表明,在强光下或从遮荫状态转入强光下,植物都会发生光抑制,其对光抑制的敏感性与植物的耐荫性(或喜光)和演替状态有密切联系。长期生长在强光下的植物受到光抑制是可恢复的,而当处于荫蔽环境的植物突然暴露于强光下时,受到的光抑制不能完全恢复,可能是(部分)光合机构受到破坏的缘故。粗枝云杉和青榨槭防御光抑制伤害的能力较强,热耗散是其防御光抑制的主要途径。长期的强光作用能使岷江冷杉和红桦发生严重光抑制,甚至光伤害,而红桦能够通过“凋落老叶,萌发新叶”的途径来适应新的强光环境。 How to restore the vegetation of subalpine coniferous forest in eastern Qinghai-Tibet Plateau, and change the trend of ecological deterioration is a very important issue. Acclimation of tree seedlings to different and varing light environment affects to a great extent the successful regeneration and establishment of subalpine coniferous forests in southwestern China’s montane forest areas, because the ability to respond to such changing resource are commonly assumed to be critical to plant success, and have a growth advantage than others. In this paper, several species seedlings in Abies faxoniana community were chosed to study the response and adaptation to light intensity and the interspecific differences of adaptability in six shaded sheds (100, 55, 40, 25, 15 and 7% of full sunlight) in the Maoxian Ecological Station of Chinese Academy of Sciences. Our results could provide a strong theoretical evidence for understanding the forest succession laws of subalpine coniferous forests, and the survival and settlement of seedlings under plantations, and provide scientific direction for the production and management of seedlings, especially the comparative studies of the acclimation to light between the conifer and broadleaf trees could provide new ideas for how to integrate the broad-leaved trees into the artificial coniferous forest. Growth under different light intensity Light intensity plays an important role on plant growth. One field experiments was conducted to study the growth of tree seedlings of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii under different light intensities. The results showed that plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources, while biomass greater allocation to the roots, could make plants under high light environment absorb more water, and avoid drought stress. During the first growing season, the relative growth rates (RGRs) of Betula albo-sinensis and Acer davidii had the greatest values under the 100% of full light, for 55% of Picea asperata, and for 25-40% of Abies faxoniana. However, in the second growing season the the relative growth rates of the two broad-leaved trees changed and were appropriate for 25-55% of full light, for 55-100% of spruce, and for 25-100% of fir. Thus, from the first year to the second year, two broad-leaved seedlings maybe more suitable to partly shading environment, and two coniferous seedlings would have an increase in light demand, which may be an increased root biomass investment. Because in this way, seedlings grown under high light could better maintain their internal water balance, and thus its growth would not be seriously affected by drought stress. In addition, serious shading would cause fir seedlings to die. Acclimation of physiology to light Plants could coexist in forest ecosystem by forming different strategies of light use. One field experiments was conducted to study the acclimation of tree seedlings to different light intensity of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii. The results showed that the photosynthetic capacity of Picea asperata and Betula albo-sinensis exhibited a general tendency of increase with more light availability; but for Abies faxoniana and Acer davidii seedlings, their highest values of the same parameters were found under intermediate light regime (i.e. 25-55% of PFD relative to full sunlight). Plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources. Leaf nitrogen and chlorophyll content increased, while dark respiration rate and light compensation points decreased, all of which were adaptive response to the low light environment. On the contrary, plants under high light environment had the thicken leaves and palisade tissue, which was a protective response to high light. Phenotypic plasticity to light Phenotypic plasticity can be exhibited in morphological and physiological processes. Physiological characteristical adjustment is the main for plant adaptation to different light environment.The means of plasticity indexes for Betula albo-sinensis and Acer davidii seelings were greater than Picea asperata and Abies faxoniana, amplied that the two broad-leaved trees were much more adaptable to the environment. In addition, spruce had the higher adaptablity than fir. The findings supported the hypothesis that the ecological characteristics of the species determined the biological status and its biological habitat selection. Photoinhibition and photoprotection to light Compared with conifer, broad-leaved trees could better change leaf morphology and adjust biomass allocation to adapt to changing light environment. However, excess light can photoinhibit photosynthesis and may lead to photooxidative destruction of the photosynthetic appatus. Two field experiments were conducted to study the photoinhibition of photosynthesis. The results showed that when plants grown under high light environment or plants transferred from low to high irradiance, the four tree seedlings would undergo a period of photoinhibition. In four species, photoinhibited leaves could recover to initial photosynthetic rates when they were long-term planted under high light environment. However, when plants were suddenly exposed to high irradiance, this photoinhibition could not be reversible, may be the photosynthesis apparatus were (or partly) photooxidatively destructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

株高是农作物的重要农艺性状之一,适度矮化有利于农作物的耐肥、抗倒、高产等。20世纪50年代,以日本的赤小麦为矮源的半矮秆小麦的培育和推广,使得世界粮食产量显著增长,被誉为“绿色革命”。迄今为止,已报到的麦类矮秆、半矮秆基因已达70多个,但由于某些矮源极度矮化或者矮化的同时伴随不利的农艺性状,使得真正运用于育种实践的矮源较少。因此,发掘和鉴定新的控制麦类作物株高的基因,开展株高基因定位、克隆及作用机理等方面的研究,对实现麦类作物株高的定向改良,具有重要的理论意义和应用价值。簇毛麦(Dasypyrum villosum,2n=14,VV)是禾本科簇毛麦属一年生二倍体异花授粉植物,为栽培小麦的近缘属。本课题组在不同来源的簇毛麦杂交后代中发现了一株自然突变产生的矮秆突变体。观察分析了该突变体的生物学特性,对矮秆性状进行了遗传分析,对茎节细胞长度、花粉的活力进行了细胞学观察,考察了该突变体内源赤霉素含量及不同浓度外施赤霉素对突变体的作用,分析了赤霉素生物合成途径中的内根贝壳杉烯氧化酶(KO)和赤霉素20氧化酶(GA20ox)的转录水平,对赤霉素20氧化酶和赤霉素3-β羟化酶(GA3ox)进行了克隆和序列分析,并对GA20ox进行了原核表达和表达的组织特异性研究。主要研究结果如下:1. 该突变体与对照植株在苗期无差异,在拔节后期才表现出植株矮小,相对对照植株,节间伸长明显受到抑制,叶鞘长度基本不变。在成熟期,对照植株的平均株高为110cm,而突变株的平均株高为32cm,仅为对照植株的1/3 左右。除了株高变矮以外,在成熟后期,突变株还表现一定程度的早衰和雄性不育。I2-KI染色法观察花粉活力结果表明,对照植株花粉90%以上都是有活力的,而突变植株的花粉仅20%左右有活力。2. 突变株与对照植株的杂交F1代均表现正常株高,表明该突变性状为隐性突变。F1代植株相互授粉得到的168株F2代植株中,株高出现分离,正常株高(株高高于80cm)与矮秆植株(株高矮于40cm)的株数比为130:38,经卡方检验,其分离比符合3:1的分离比,因此推测该突变体属于单基因的隐性突变。3. 用ELISA方法检测突变株和对照植株的幼嫩种子中内源性生物活性赤霉素(GA1+3)含量,结果表明突变株的赤霉素含量为36 ng/ml,而对照植株的赤霉素含量为900 ng/ml。对突变株外施赤霉素,发现矮秆突变株的株高和花粉育性均可得到恢复。这些结果表明该突变株为赤霉素缺陷型突变。4. 用荧光定量PCR方法比较突变株与对照植株中内根贝壳杉烯氧化酶和赤霉素20氧化酶的转录水平,结果表明突变株的KO转录水平比对照植株分别提高了6倍(苗期)和16倍(成熟期),突变株的GA20ox转录水平与对照植株在苗期无明显差异,在成熟期突变株较对照植株则提高了10倍左右。这些结果表明该矮秆突变体与赤霉素的生物合成途径密切相关,而且极有可能在赤霉素的生物合成途径早期就发生了改变。5. 以簇毛麦总基因组为模板,同源克隆了GenBank登录号为EU142950,RT-PCR分离克隆了簇毛麦的GA3ox基因cDNA全长序列,分析结果表明该cDNA全长1206bp,含完整编码区1104bp,推测该序列编码蛋白含368个氨基酸残基,分子量为40.063KD,等电点为6.27。预测的氨基酸序列含有双加氧酶的活性结构,在酶活性中心2个Fe离子结合的氨基酸残基非常保守。该序列与小麦、大麦和水稻的GA3ox基因一致性分别为98%、96%、86%。基因组序列与cDNA序列在外显子部分一致,在478-715bp和879-1019bp处分别含238bp和140bp的内含子。6. 通过RT-PCR技术克隆了簇毛麦的GA20ox基因全长,命名为DvGA20ox,GenBank登录号为EU142949。该基因全长1080个碱基,编码359个氨基酸,具有典型的植物GA20ox基因结构。该基因编码的蛋白质与小麦、大麦、黑麦草等GA20ox蛋白的同源性分别为98%,97% 和91%。该序列重组到原核表达载体pET-32a(+)上,将获得的重组子pET-32a(+)-DvGA20ox转化大肠杆菌BL21pLysS后用IPTG进行诱导表达。SDS-PAGE分析表明,DvGA20ox基因在大肠杆菌中获得了高效表达,融合蛋白分子量为55kDa。定量PCR分析表明,该基因在簇毛麦不同器官中的表达差异明显:叶片中表达水平最高,根部表达水平次之,茎部和穗中表达较弱。在外施赤霉素后,该基因的表达水平在两小时以后急剧下降,表明该基因的表达受自身的反馈调节。本研究结果认为,(1)该簇毛麦矮秆突变体为单基因的隐性突变;(2)该矮秆突变体为赤霉素敏感突变,内源赤霉素含量检测表明突变体的内源性赤霉素含量仅为对照植株的1/30;(3)荧光定量PCR结果表明突变株的赤霉素生物合成途径的关键酶基因表达水平比对照植株高,而且突变植株的赤霉素生物合成改变很可能发生在赤霉素生物合成途径的早期;(4)GA20ox有表达的组织特异性,且受到自身产物的反馈调节。 Plant height is an impotrant agronomic trait of triticeae crops.Semi-dwarf cropcultivars, including those of wheat, maize and rice, have significantly increased grainproduction that has been known as “green revolution”. The new dwarf varieties couldraise the harvest Index at the expense of straw biomass, and, at the sametime, improvelodging resistance and responsiveness to nitrogen fertilizer. Moreover, dwarf traits ofplant are crucial for elucidating mechanisms for plant growth and development aswell. In many plant species, various dwarf mutants have been isolated and theirmodles of inheritance and physiology also have been widely investigated.The causesfor their dwarf phenotypes were found to be associated with plant hormones,especially, gibberellins GAs.Dasypyrum villosum Candargy (syn.Haynaldia villosa) is a cross-pollinating,diploid (2n = 2x = 14) annual species that belongs to the tribe Triticeae. It is native toSouthern Europe and West Asia, especially the Caucasuses, and grows underconditions unfavorable to most cultivated crops. The genome of D. villosum,designated V by Sears, is considered an important donor of genes to wheat for improving powdery mildew resistance, take-all, eyespot, and plant and seed storageprotein content. A spontaneous dwarf mutant was found in D. villosum populations.The biological character and modles of inheritance of this dwarf mutant are studied.The cell length of stem cell is observed. The influence of extraneous gibberellin tothe dwarf mutant is also examined; the transcript level of key enzyme of gibberellinbiosynthesis pathway in mutant and control plants is compared. GA3ox and GA20oxare cloned and its expression pattern is researched.1. The dwarf mutant showed no difference with control plants at seedlingstage.At mature stage, the average height of control plants were 110cm and the dwarfplants were 33cm. The height of the mutant plant was only one third of the normalplants due to the shortened internodes. Cytology observation showed that theelongation of stem epidermal and the parenchyma cells were reduced. The dwarfmutant also shows partly male sterile. Pollen viability test indicates that more than80% of the pollen of the mutant is not viable.2. The inheritance modle of this dwarf mutant is studied. All The F1 plantsshowed normal phenotype indicating that the dwarfism is controlled by recessivealleles. Among the 168 F2 plants, there are 130 normal plants and 30 dwarf plants, thesegregation proportion accord with Mendel’s 3:1 segregation. We therefore proposethat this dwarf phenotype is controlled by a single recessive gene.3. Quantitative analyses of endogenous GA1+3 in the young seeds indicated thatthe content of GA1+3 was 36ng/ml in mutant plants and 900ng/ml in normal plants.The endogenous bioactive GA1+3 in mutant plants are only about 1/30 of that innormal plants. In addition, exogenously supplied GA3 could considerably restore themutant plant to normal phenotype. These results showed that this mutant wasdefective in the GA biosynthesis.4. More than ten enzymes are involved in GA biosynthesis. KO catalyzes thefirst cytochrome P450-mediated step in the gibberellin biosynthetic pathway and themutant of KO lead to a gibberellin-responsive dwarf mutant. GA20ox catalyze therate-limited steps so that their transcript level will influence the endogenous GAbiosynthesis and modifies plant architecture. The relative expression levels of genesencoding KO and GA20ox were quantified by real time PCR to assess whether thechanges in GA content correlated with the expression of GA metabolism genes andwhere the mutant occurred during the GA biosynthesis pathway. In mutant plants,the transcript levels of KO increased about 6-fold and 16-fold at the seedling stage and elongating stage respectively comparing with the normal plants. For theseedlings, there was no notable difference in the expression of GA20ox betweenmutant and normal plants. At the elongating stage, GA20ox transcript increased 10times in mutant plants, suggesting that the GA biosynthesis pathway in mutant plantshad changed from the early steps rather than the late steps.5. A full length cDNA of D. villosum gibberellin 3β-hydroxylase homology(designated as DvGA3ox) was isolated and consisted of 1206bp containing an openreading frame of 1104bp encoding 368 predicted amino acid residues. Identityanalysis showed that the gibberellin 3β-hydroxylase nucleotide sequence shared 98%,96% and 86% homology with that of wheat, barley and rice. The predicted peptidecontained the active-site Fe of known gibberellin 3β-hydroxylase and the regionhomologous to wheat, barley and Arabidopsis. The genomic clone of gibberellin3β-hydroxylase has two introns.6. The full-length cDNA of D. villosum gibberellin 20 oxidase (designated asDvGA20ox) was isolated and consisted of 1080-bp and encoded 359 amino acidresidues with a calculated mol wt of 42.46 KD. Comparative and bio-informaticsanalyses revealed that DvGA20ox had close similarity with GA20ox from otherspecies and contained a conserved LPWKET and NYYPXCQKP regions. Tissueexpression pattern analysis revealed DvGA20ox expressed in all the tissues that wereexamined and the highest expression of DvGA20ox in expanding leaves followed byroots. Heterologous expression of this cDNA clone in Escherichia coli gave a fusionprotein that about 55KD. Transcript levels of DvGA20ox dramatically reduced twohours after application of biologically active GA3, suggesting that the biosynthesis ofthis enzymes might be under feedback control.