958 resultados para Pests of plants


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Observing and documenting life cycle stages of plants and animals have been tradition and necessity for humans throughout history. Phenological observations—as called by their modern scientific name—were key to successful hunting and farming because the precise knowledge of animal behavior and plant growth, as well as their timing with changing seasons, was critical for survival. In today's context of environmental awareness and climate change research, phenological observations have become prime indicators of documenting altered life cycles due to environmental change in disciplines from biology to climatology, geography, and environmental history. Observations on the ground, from space, and from models of different complexity describe intra-annual and interannual changes of life cycles at individual, pixel, or grid box scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits—fine-tuned by environmental factors—determine success or failure of alien and native plants in temperate grasslands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Animal pollination is essential for the reproductive success of many wild and crop plants. Loss and isolation of (semi-)natural habitats in agricultural landscapes can cause declines of plants and pollinators and endanger pollination services.We investigated the independent effects of these drivers on pollination of young cherry trees in a landscape-scale experiment. We included (i) isolation of study trees from other cherry trees (up to 350 m), (ii) the amount of cherry trees in the landscape, (iii) the isolation from other woody habitats (up to 200 m) and (iv) the amount of woody habitats providing nesting and floral resources for pollinators. At the local scale, we considered effects of (v) cherry flower density and (vi) heterospecific flower density. Pollinators visited flowers more often in landscapes with high amount of woody habitat and at sites with lower isolation from the next cherry tree. Fruit set was reduced by isolation from the next cherry tree and by a high local density of heterospecific flowers but did not directly depend on pollinator visitation. These results reveal the importance of considering the plant’s need for con-specific pollen and its pollen competition with co-flowering species rather than focusing only on pollinators’ habitat requirements and flower visita-tion. It proved to be important to disentangle habitat isolation from habitat loss, local from landscape-scale effects, and direct effects of pollen availability on fruit set from indirect effects via pollinator visitation to understand the delivery of an agriculturally important ecosystem service.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Agroforestry is a sustainable land use method with a long tradition in the Bolivian Andes. A better understanding of people’s knowledge and valuation of woody species can help to adjust actor-oriented agroforestry systems. In this case study, carried out in a peasant community of the Bolivian Andes, we aimed at calculating the cultural importance of selected agroforestry species, and at analysing the intracultural variation in the cultural importance and knowledge of plants according to peasants’ sex, age, and migration. Methods Data collection was based on semi-structured interviews and freelisting exercises. Two ethnobotanical indices (Composite Salience, Cultural Importance) were used for calculating the cultural importance of plants. Intracultural variation in the cultural importance and knowledge of plants was detected by using linear and generalised linear (mixed) models. Results and discussion The culturally most important woody species were mainly trees and exotic species (e.g. Schinus molle, Prosopis laevigata, Eucalyptus globulus). We found that knowledge and valuation of plants increased with age but that they were lower for migrants; sex, by contrast, played a minor role. The age effects possibly result from decreasing ecological apparency of valuable native species, and their substitution by exotic marketable trees, loss of traditional plant uses or the use of other materials (e.g. plastic) instead of wood. Decreasing dedication to traditional farming may have led to successive abandonment of traditional tool uses, and the overall transformation of woody plant use is possibly related to diminishing medicinal knowledge. Conclusions Age and migration affect how people value woody species and what they know about their uses. For this reason, we recommend paying particular attention to the potential of native species, which could open promising perspectives especially for the young migrating peasant generation and draw their interest in agroforestry. These native species should be ecologically sound and selected on their potential to provide subsistence and promising commercial uses. In addition to offering socio-economic and environmental services, agroforestry initiatives using native trees and shrubs can play a crucial role in recovering elements of the lost ancient landscape that still forms part of local people’s collective identity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dichotomous identification keys are used throughout biology for identification of plants, insects, and parasites. However, correct use of identification keys can be difficult as they are not usually intended for novice users who may not be familiar with the terminology used or with the morphology of the organism being identified. Therefore, we applied cognitive engineering principles to redesign a parasitology identification key for the Internet. We addressed issues of visual clutter and spatial distance by displaying a single question couplet at a time and by switching to the appropriate next couplet after the user made a choice. Our analysis of the original paper-based key versus the Web-based approach found that of 26 applicable cognitive engineering principles, the paper key did not meet 4 (15%) and partially met 11 (42%). In contrast, the redesigned key met 100% of 32 applicable cognitive engineering principles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An interdisciplinary research unit consisting of 30 teams in the natural, economic and social sciences analyzed biodiversity and ecosystem services of a mountain rainforest ecosystem in the hotspot of the tropical Andes, with special reference to past, current and future environmental changes. The group assessed ecosystem services using data from ecological field and scenario-driven model experiments, and with the help of comparative field surveys of the natural forest and its anthropogenic replacement system for agriculture. The book offers insights into the impacts of environmental change on various service categories mentioned in the Millennium Ecosystem Assessment (2005): cultural, regulating, supporting and provisioning ecosystem services. Examples focus on biodiversity of plants and animals including trophic networks, and abiotic/biotic parameters such as soils, regional climate, water, nutrient and sediment cycles. The types of threats considered include land use and climate changes, as well as atmospheric fertilization. In terms of regulating and provisioning services, the emphasis is primarily on water regulation and supply as well as climate regulation and carbon sequestration. With regard to provisioning services, the synthesis of the book provides science-based recommendations for a sustainable land use portfolio including several options such as forestry, pasture management and the practices of indigenous peoples. In closing, the authors show how they integrated the local society by pursuing capacity building in compliance with the CBD-ABS (Convention on Biological Diversity - Access and Benefit Sharing), in the form of education and knowledge transfer for application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Temporal dynamics create unique and often ephemeral conditions that can influence soil microbial biogeography at different spatial scales. This study investigated the relation between decimeter to meter spatial variability of soil microbial community structure, plant diversity, and soil properties at six dates from April through November. We also explored the robustness of these interactions over time. An historically unfertilized, unplowed grassland in southwest Germany was selected to characterize how seasonal variability in the composition of plant communities and substrate quality changed the biogeography of soil microorganisms at the plot scale (10 m x 10 m). Microbial community spatial structure was positively correlated with the local environment, i.e. physical and chemical soil properties, in spring and autumn, while the density and diversity of plants had an additional effect in the summer period. Spatial relationships among plant and microbial communities were detected only in the early summer and autumn periods when aboveground biomass increase was most rapid and its influence on soil microbial communities was greatest due to increased demand by plants for nutrients. Individual properties exhibited varying degrees of spatial structure over the season. Differential responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms change over a season and that chemical soil properties are more important controlling factors than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as taxonomic resolution of microbial groups, could help determine the importance of plant species density, composition, and growth stage in shaping microbial community composition and spatial patterns. (C) 2014 The Authors. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction According to the Swiss Health Survey 2007, 1.7% of the adult population use traditional Chinese medicine (including Chinese herbal medicine, but excluding acupuncture). In contrast to conventional drugs, that contain single chemically defined substances, prescriptions of Chinese herbs are mixtures of up to 40 ingredients (parts of plants, fungi, animal substances and minerals). Originally they were taken in the form of decoctions, but nowadays granules are more popular. Medium daily dosages of granules range between 8 to 12g. In a recent work we identified the most commonly used Chinese herbs (all ingredients are referred to as herbs for reasons of simplicity) and classical formulas (mixtures). Here we present a short overview and the example of suan zao ren (Ziziphi Spinosae Semen), which is used in the treatment of insomnia and anxiety and contains saponins that have been shown to increase sleep in animal studies. Material and Methods A random sample of 1,053 prescriptions was drawn from the database of Lian Chinaherb AG, Switzerland, and analysed according to the most frequently used individual herbs and classical formulas. Cluster analysis (Jaccard similarity coefficient, complete linkage method) was applied to identify common combinations of herbs. Results The most frequently used herbs were dang gui (Angelicae Sinensis Radix), fu ling (Poria), bai shao (Paeoniae Radix Alba), and gan cao (Glycyrrhizae Radix et Rhizoma); the most frequently used classical formulas were gui pi tang (Restore the Spleen Decoction) and xiao yao san (Rambling Powder). The average number of herbs per prescription was 12.0, and the average daily dosage of granules was 8.7g. 74.3% of the prescriptions were for female, 24.8% for male patients. Suan zao ren was present in 14.2% of all prescriptions. These prescriptions contained on average 13.7 herbs, and the daily dosage of granules was 8.9g. Suan zao ren was more frequently prescribed by practitioners of non-Asian than of Asian origin but equally often for female and male patients. Cluster analysis grouped suan zao ren with yuan zhi (Polygalae Radix), bai zi ren (Platycladi Semen), sheng di huang (Rehmanniae Radix) and dan shen (Salviae Miltiorrhizae Radix et Rhizoma). Discussion Prescriptions including suan zao ren contained on average slightly more herbs than other prescriptions. This might be due to the fact that two of the three most popular classical formulas with suan zao ren are composed of 13 and 12 herbs with the possibility of adding more ingredients when necessary. Cluster analysis resulted in the clustering of suan zao ren with other herbs of the classical formula tian wang bu xin dan (Emperor of Heaven’s Special Pill to Tonify the Heart), indicating the use of suan zao ren for the treatment of insomnia and irritability. Unfortunately, the diagnoses of the patients were unavailable and thus correlations between use of suan zao ren and diseases could not be analysed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Volatiles emitted by herbivore-infested plants are highly attractive to parasitoids and therefore have been proposed to be part of an indirect plant defense strategy. However, this proposed function of the plant-provided signals remains controversial, and it is unclear how specific and reliable the signals are under natural conditions with simultaneous feeding by multiple herbivores. Phloem feeders in particular are assumed to interfere with plant defense responses. Therefore, we investigated how attack by the piercing-sucking cicadellid Euscelidius variegatus influences signaling by maize plants in response to the chewing herbivore Spodoptera littoralis.Results: The parasitoid Cotesia marginiventris strongly preferred volatiles of plants infested with its host S. littoralis. Overall, the volatile emissions induced by S. littoralis and E. variegatus were similar, but higher levels of certain wound-released compounds may have allowed the wasps to specifically recognize plants infested by hosts. Expression levels of defense marker genes and further behavioral bioassays with the parasitoid showed that neither the physiological defense responses nor the attractiveness of S. littoralis infested plants were altered by simultaneous E. variegatus attack.Conclusions: Our findings imply that plant defense responses to herbivory can be more robust than generally assumed and that ensuing volatiles convey specific information about the type of herbivore that is attacking a plant, even in complex situations with multiple herbivores. Hence, the results of this study support the notion that herbivore-induced plant volatiles may be part of a plant's indirect defense stratagem. © 2010 Erb et al; licensee BioMed Central Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activated carbon has become a widely used tool to investigate root-mediated allelopathy of plants, especially in plant invasion biology, because it adsorbs and thereby neutralizes root exudates. Allelopathy has been a controversially debated phenomenon for years, which revived in plant invasion biology as one possible reason for the success of invasive plants. Noxious plant exudates may harm other plants and provide an advantage to the allelopathic plant. However, root exudates are not always toxic, but may stimulate the microbial community and change nutrient availability in the rhizosphere. In a greenhouse experiment, we investigated the interacting effects of activated carbon, arbuscular mycorrhiza and plant competition between the invasive Senecio inaequidens and the native Artemisia vulgaris. Furthermore, we tested whether activated carbon showed any undesired effects by directly affecting mycorrhiza or soil chemistry. Contrary to the expectation, S. inaequidens was a weak competitor and we could not support the idea that allelopathy was involved in the competition. Activated carbon led to a considerable increase in the aboveground biomass production and reduced the infection with arbuscular mycorrhiza of both plant species. We expected that arbuscular mycorrhiza promotes plant growth by increasing nutrient availability, but we found the contrary when activated carbon was added. Chemical analyses of the substrate showed, that adding activated carbon resulted in a strong increase in plant available phosphate and in a decrease of the C(organic)/N(total) ration both of which suggest stimulated microbial activity. Thus, activated carbon not only reduced potential allelopathic effects, but substantially changed the chemistry of the substrate. These results show that activated carbon should be handled with great care in ecological experiments on allelopathy because of possible confounding effects on the soil community.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: The re sponse of crop plants ex posed on drought or heat shock is related to de crease in the synthesis of normal proteins, accompanied by increased translation of heat shock proteins (HSPs). Though drought and heat stress have been studied individually, little is known about their combined effect on plants. Methods: The wheat (Triticum aestivum L.) varieties (Katya-tolerant, Sadovo or Mladka-susceptible) were potted in soil. Eight-day-old plants were ex posed to with drawing water for seven days. Heat shock was realized in growth chamber at 40 °C for 6h. A combination of drought and heat shock was per formed by subjecting drought-stressed plants to heat shock treatment. Expression of HSPs in the first leaf of wheat varieties was analyzed by SDS electrophoresis and immunoblotting. Polyclonal antibodies against HSP20, HSP60, HSP110 and mononclonal antibodies against HSP70 were used to distinguish the mentioned HSPs. Results: The leaf relative water content (RWC), which indicated the level of plant dehydration decreased significantly (34 %) under drought stressed conditions The electrolyte leakage of ions (EL), representing the level of the cell membrane stability in creased mark edly (68 %), especially under combination of drought and heat. Maximum EL was ob served in drought susceptible varieties Sadovo and Mladka. Drought and heat shock combination in the wheat plants resulted in the induction of specific HSPs. Conclusions: Our results demonstrate that the response of the wheat plants to a combination of drought and heat stress is different from the response of plants to each of these stresses applied separately. Induction of synergetic effect on HSP expression in case of combination between drought and heat was discussed in the case of two contrasting wheat varieties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The defense of plants against herbivores and pathogens involves the participation of an enormous range of different metabolites, some of which act directly as defensive weapons against enemies (toxins or deterrents) and some of which act as components of the complex internal signaling network that insures that defense is timed to enemy attack. Recent work reveals a surprising trend: The same compounds may act as both weapons and signals of defense. For example, two groups of well-studied defensive weapons, glucosinolates and benzoxazinoids, trigger the accumulation of the protective polysaccharide callose as a barrier against aphids and pathogens. In the other direction, several hormones acting in defense signaling (and their precursors and products) exhibit activity as weapons against pathogens. Knowing which compounds are defensive weapons, which are defensive signals and which are both is vital for understanding the functioning of plant defense systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

VirB6 from Agrobacterium tumefaciens is an essential component of the type IV secretion machinery for T pilus formation and genetic transformation of plants. Due to its predicted topology as a polytopic inner membrane protein, it was proposed to form the transport pore for cell-to-cell transfer of genetic material and proteinaceous virulence factors. Here, we show that the absence of VirB6 leads to reduced cellular levels of VirB5 and VirB3, which were proposed to assist T pilus formation as minor component(s) or assembly factor(s), respectively. Overexpression of virB6 in trans restored levels of cell-bound and T pilus-associated VirB5 to wild type but did not restore VirB3 levels. Thus, VirB6 has a stabilizing effect on VirB5 accumulation, thereby regulating T pilus assembly. In the absence of VirB6, cell-bound VirB7 monomers and VirB7-VirB9 heterodimers were reduced and VirB7 homodimer formation was abolished. This effect could not be restored by expression of VirB6 in trans. Expression of TraD, a component of the transfer machinery of the IncN plasmid pKM101, with significant sequence similarity to VirB6, restored neither protein levels nor bacterial virulence but partly permitted T pilus formation in a virB6 deletion strain. VirB6 may therefore regulate T pilus formation by direct interaction with VirB5, and wild-type levels of VirB3 and VirB7 homodimers are not required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.