933 resultados para Pest control - Australia
Resumo:
Pseudocercospora macadamiae is an important pathogen of macadamia in Australia, causing a disease known as husk spot. Growers strive to control the disease with a number of carbendazim and copper treatments. The aim of this study was to consider the macadamia fruit developmental stage at which fungicide application is most effective against husk spot, and whether application of copper-only applications at full-size fruit developmental stage toward the end of the season contributed to effective disease control. Fungicides were applied to macadamia trees at four developmental stages in three orchards in two subsequent production seasons. The effects of the treatments on disease incidence and severity were quantified using area under disease progress curve (AUDPC) and logistic regression models. Although disease incidence varied between cultivars, incidence and severity on cv. A16 showed consistent differences between the treatments. Most significant reduction in husk spot incidence occurred when spraying commenced at match-head sized-fruit developmental stage. All treatments significantly reduced husk spot incidence and severity compared with the untreated controls, and a significant positive linear relationship (R2 = 73%) between AUDPC and severity showed that timing of the first fungicide application is important for effective disease control. Application of fungicide at full-size fruit stage reduced disease incidence but had no impact on premature fruit drop.
Resumo:
Fruit-piercing moths are significant pests of a range of fruit crops throughout much of the world's tropics and subtropics. Feeding damage by the adult moths is most widely reported in varieties of citrus. In the years 2003 and 2004, fruit-piercing moth activity was observed regularly at night in citrus crops in northeast Australia, to determine the level of maturity (based on rind colour) and soundness of fruit attacked. 'Navelina' navel and 'Washington' navel orange, grapefruit and mixed citrus crops were assessed, and fruit was rated and placed into five categories: green, colouring, ripe, overripe and damaged. There were no statistical differences in the percentage of fruit attacked in each category across crops. However, within the individual crops significant proportions of green 'Navelina' fruit (58.7%) and green mixed citrus (57.1%) were attacked in 2004. Among all the crops assessed, 25.1% of moth feeding occurred on overripe or damaged fruit. Crops started to be attacked at least 8 weeks before picking, but in two crops there were large influxes of moths (reaching 27 and 35 moths/100 trees, respectively) immediately before harvest. Moth activity was most intense between late February and late March. Eudocima fullonia (Clerck) represented 79.1% of all moths recorded on fruit, with Eudocima materna (L.), Eudocima salaminia (Cramer) and Serrodes campana (Guen.) the only other species observed capable of inflicting primary damage. Our results suggest that growers should monitor moth activity from 8 weeks before harvest and consider remedial action if moth numbers increase substantially as the crop matures or there is a history of moth problems. The number of fruit pickings could be increased to progressively remove ripe fruit or early harvest of the entire crop contemplated if late influxes of moths are known.
Resumo:
In the absence of a national health care-associated infection surveillance program in Australia, differences between existing state-based programs were explored using an online survey. Only 51% of respondents who undertake surveillance have been trained, fewer than half perform surgical site infection surveillance prospectively, and only 41% indicated they risk adjust surgical site infection data. Wide- spread variation of surveillance methods highlights future challenges when considering the development and implementation of a national program in Australia.
Resumo:
Distributions of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in litter of a compacted earth floor broiler house in southeastern Queensland, Australia, were studied over two flocks. Larvae were the predominant stage recorded. Significantly low densities occurred in open locations and under drinker cups where chickens had complete access, whereas high densities were found under feed pans and along house edges where chicken access was restricted. For each flock, lesser mealworm numbers increased at all locations over the first 14 d, especially under feed pans and along house edges, peaking at 26 d and then declining over the final 28 d. A life stage profile per flock was devised that consisted of the following: beetles emerge from the earth floor at the beginning of each flock, and females lay eggs, producing larvae that peak in numbers at 3 wk; after a further 3 to 4 wk, larvae leave litter to pupate in the earth floor, and beetles then emerge by the end of the flock time. Removing old litter from the brooder section at the end of a flock did not greatly reduce mealworm numbers over the subsequent flock, but it seemed to prevent numbers increasing, while an increase in numbers in the grow-out section was recorded after reusing litter. Areas under feed pans and along house edges accounted for 5% of the total house area, but approximately half the estimated total number of lesser mealworms in the broiler house occurred in these locations. The results of this study will be used to determine optimal deployment of site-specific treatments for lesser mealworm control.
Resumo:
Laboratory experiments were conducted to determine the efficacy of spinosad (a biopesticide), chlorpyrifos-methyl (an organophosphorus compound (OP)) and s-methoprene (a juvenile hormone analogue) applied alone and in binary combinations against five stored-grain beetles in wheat. There were three strains of Rhyzopertha dominica, and one strain each of Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis and Cryptolestes ferrugineus. These strains were chosen to represent a range of possible resistant genotypes, exhibiting resistance to organophosphates, pyrethroids or methoprene. Treatments were applied at rates that are registered or likely to be registered in Australia. Adults were exposed to freshly treated wheat for 2 weeks, and the effects of treatments on mortality and reproduction were determined. No single protectant or protectant combination controlled all insect strains, based on the criterion of >99% reduction in the number of live F1 adults relative to the control. The most effective combinations were spinosad at 1 mg kg-1+chlorpyrifos-methyl at 10 mg kg-1 which controlled all strains except for OP-resistant O. surinamensis, and chlorpyrifos-methyl at 10 mg kg-1+s-methoprene at 0.6 mg kg-1 which controlled all strains except for methoprene-resistant R. dominica. The results of this study demonstrate the difficulty in Australia, and potentially other countries which use protectants, of finding protectant treatments to control a broad range of pest species in the face of resistance development.
Resumo:
Biological control of parthenium, a major weed in grazing areas in Australia, was initiated in the mid 1970s. Since then, nine species of insects and two rust fungi have been introduced. Evaluation using pesticide exclusion at two sites (Mt. Panorama and Plain Creek) in Queensland, Australia, revealed that classical biological control had a significant negative effect on the target weed, but the impact varied between years. In this study, I quantified the effects of biological control of parthenium on grass production. Grass production declined with the increase in parthenium biomass. Significant increase in grass production due to biological control was observed, but only in 1 of 4 yr at Mt. Panorama and 2 of 4 yr at Plain Creek. At Mt. Panorama, there was a 40% increase in grass biomass in 1997 because of defoliation by Zygogramma bicolorata and galling by Epiblema strenuana. At Plain Creek, grass biomass increased by 52% in 1998 because of E. strenuana and by 45% in 2000 because of combined effects of E. strenuana and the summer rust Puccinia melampodii. This study provides evidence on the beneficial effects of biological control of parthenium in areas under limited grazing.
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
Resistance to cyfluthrin in broiler farm populations of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in eastern Australia was suspected to have contributed to recent control failures. In 2000-2001, beetles from 11 broiler farms were tested for resistance by comparing them to an insecticide-susceptible reference population by using topical application. Resistance was detected in almost all beetle populations (up to 22 times the susceptible at the LC50), especially in southeastern Queensland where more cyfluthrin applications had been made. Two from outside southeastern Queensland were found to be susceptible. Dose-mortality data generated from the reference population over a range of cyflutbrin concentrations showed that 0.0007% cyfluthrin at a LC99.9 level could be used as a convenient dose to discriminate between susceptible and resistant populations. Using this discriminating concentration, from 2001 to 2005, the susceptibilities of 18 field populations were determined. Of these, 11 did not exhibit complete mortality at the discriminating concentration (mortality range 2.8-97.7%), and in general, cyfluthrin resistance was directly related to the numbers of cyfluthrin applications. As in the full study, populations outside of southeastern Queensland were found to have lower levels of resistance or were susceptible. One population from an intensively farmed broiler area in southeastern Queensland exhibited low mortality despite having no known exposure to cyfluthrin. Comparisons of LC50 values of three broiler populations and a susceptible population, collected in 2000 and 2001 and recollected in 2004 and 2005 indicated that values from the three broiler populations had increased over this time for all populations. The continued use of cyfluthrin for control of A. diaperinus in eastern Australia is currently under consideration.
Resumo:
The highly persistent cyclodiene (organochlorine) insecticides (aldrin, dieldrin, chlordane and heptachlor), the main termiticides used in Australia for 30 years, were withdrawn from use in most of Australia on 30 June 1995. Alternative strategies for subterranean termite management in buildings and other structures had been under development, well before this withdrawal. Here we focus on these and subsequent developments in subterranean termite management, relevant to Queensland, including a national survey, relevant building regulations, approvals and changes in the Australian Standards on termite management. Developments including a national training and competency-based-licensing system for pest managers, insurance of dwellings against termite damage and several alternative termite management strategies are discussed. An integrated approach to termite management is the likely direction for the future in Australia, minimising reliance on chemical sprays and drenches. There will be an increased need for physical barriers in improved building design and reliable preventative and remedial treatments involving bait technology. The need for research on termite biology and, in particular, foraging behavior is emphasized yet again.
Resumo:
Spinosad was proposed as a potential chemical for control of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses after the detection of strong cyfluthrin resistance in many beetle populations. In 2004-2006, spinosad susceptibility of 13 beetle populations from eastern and southern Australian broiler houses and a cyfluthrin/fenitrothion-resistant reference population was determined using topical application, and was compared with the susceptibility of an insecticide-susceptible reference population. Comparisons of dose-response curves and baseline data showed that all populations, including the insecticide-susceptible population, were roughly equivalent in their response to spinosad, indicating no preexisting spinosad resistance. Two field populations, including the resistant reference population, which had confirmed cyfluthrin/fenitrothion- resistance, showed no cross-resistance to spinosad. There was no significant correlation between beetle weight and LC99.9. A discriminating concentration of 3% spinosad was set to separate resistant and susceptible individuals. Considering the levels of spinosad resistance that have been recorded in other insect pests, the sustained future usefulness of spinosad as a broiler house treatment will rely on effective integrated beetle management programs combined with carefully planned chemical use strategies.
Resumo:
Climate matching software (CLIMEX) was used to prioritise areas to explore for biological control agents in the native range of cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), and to prioritise areas to release the agents in the introduced ranges of the plant. The native distribution of cat's claw creeper was used to predict the potential range of climatically suitable habitats for cat's claw creeper in its introduced ranges. A Composite Match Index (CMI) of cat's claw creeper was determined with the 'Match Climates' function in order to match the ranges in Australia and South Africa where the plant is introduced with its native range in South and Central America. This information was used to determine which areas might yield climatically-adapted agents. Locations in northern Argentina had CMI values which best matched sites with cat's claw creeper infestations in Australia and South Africa. None of the sites from where three currently prioritised biological control agents for cat's claw creeper were collected had CMI values higher than 0.8. The analysis showed that central and eastern Argentina, south Brazil, Uruguay and parts of Bolivia and Paraguay should be prioritised for exploration for new biological control agents for cat's claw creeper to be used in Australia and South Africa.
Resumo:
The genetic population structure of red snapper Lutjanus malabaricus and Lutjanus erythropterus in eastern Indonesia and northern Australia was investigated by allozyme electrophoresis and sequence variation in the control region of mtDNA. Samples were collected from eight sites in Indonesia and four sites in northern Australia for both species. A total of 13 allozyme loci were scored. More variable loci were observed in L. malabaricus than in L. erythropterus. Sequence variation in the control region (left domain) of the mitochondrial genome was assessed by RFLP and direct sequencing. MtDNA haplotype diversity was high (L. erythropterus, 0.95 and L. malabaricus, 0.97), as was intraspecific sequence divergence, (L. erythropterus, 0.0-12.5% and L. malabaricus, 0.0-9.5%). The pattern of mtDNA haplotype frequencies grouped both species into two broad fisheries stocks with a genetic boundary either between Kupang and Sape (L. malabaricus) or between Kupang and Australian Timor Sea (L. erythropertus). The allozyme analyses revealed similar boundaries for L. erythropterus. Seven allozymes stocks compared to two mtDNA stocks of L. malabaricus including Ambon, which was not sampled with mtDNA, however, were reported. Possible reasons for differences in discrimination between the methods include: i) increased power of multiple allozyme loci over the single mtDNA locus, ii) insufficient gene sampling in the mtDNA control region and iii) relative evolutionary dynamics of nuclear (allozyme loci) and mitochondrial DNA in these taxa. Allozyme and haplotype data did not distinguish separate stocks among the four Australian locations nor the central Indonesian (Bali and Sape locations) for both L. malabaricus and L. erythropterus.
Resumo:
Quantifying the potential spread and density of an invading organism enables decision-makers to determine the most appropriate response to incursions. We present two linked models that estimate the spread of Solenopsis invicta Buren (red imported fire ant) in Australia based on limited data gathered after its discovery in Brisbane in 2001. A stochastic cellular automaton determines spread within a location (100 km by 100 km) and this is coupled with a model that simulates human-mediated movement of S. invicta to new locations. In the absence of any control measures, the models predict that S. invicta could cover 763 000–4 066 000 km2 by the year 2035 and be found at 200 separate locations around Australia by 2017–2027, depending on the rate of spread. These estimated rates of expansion (assuming no control efforts were in place) are higher than those experienced in the USA in the 1940s during the early invasion phases in that country. Active control efforts and quarantine controls in the USA (including a concerted eradication attempt in the 1960s) may have slowed spread. Further, milder winters, the presence of the polygynous social form, increased trade and human mobility in Australia in 2000s compared with the USA in 1940s could contribute to faster range expansion.
Resumo:
Tillage is defined here in a broad sense, including disturbance of the soil and crop residues, wheel traffic and sowing opportunities. In sub-tropical, semi-arid cropping areas in Australia, tillage systems have evolved from intensively tilled bare fallow systems, with high soil losses, to reduced and no tillage systems. In recent years, the use of controlled traffic has also increased. These conservation tillage systems are successful in reducing water erosion of soil and sediment-bound chemicals. Control of runoff of dissolved nutrients and weakly sorbed chemicals is less certain. Adoption of new practices appears to have been related to practical and economic considerations, and proved to be more profitable after a considerable period of research and development. However there are still challenges. One challenge is to ensure that systems that reduce soil erosion, which may involve greater use of chemicals, do not degrade water quality in streams. Another challenge is to ensure that systems that improve water entry do not increase drainage below the crop root zone, which would increase the risk of salinity. Better understanding of how tillage practices influence soil hydrology, runoff and erosion processes should lead to better tillage systems and enable better management of risks to water quality and soil health. Finally, the need to determine the effectiveness of in-field management practices in achieving stream water quality targets in large, multi-land use catchments will challenge our current knowledge base and the tools available.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.