875 resultados para Pattern classifiers
Resumo:
This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to interannual climate variation than zooplankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin-scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown'' but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources.
Resumo:
The respiratory central pattern generator is a collection of medullary neurons that generates the rhythm of respiration. The respiratory central pattern generator feeds phrenic motor neurons, which, in turn, drive the main muscle of respiration, the diaphragm. The purpose of this thesis is to understand the neural control of respiration through mathematical models of the respiratory central pattern generator and phrenic motor neurons. ^ We first designed and validated a Hodgkin-Huxley type model that mimics the behavior of phrenic motor neurons under a wide range of electrical and pharmacological perturbations. This model was constrained physiological data from the literature. Next, we designed and validated a model of the respiratory central pattern generator by connecting four Hodgkin-Huxley type models of medullary respiratory neurons in a mutually inhibitory network. This network was in turn driven by a simple model of an endogenously bursting neuron, which acted as the pacemaker for the respiratory central pattern generator. Finally, the respiratory central pattern generator and phrenic motor neuron models were connected and their interactions studied. ^ Our study of the models has provided a number of insights into the behavior of the respiratory central pattern generator and phrenic motor neurons. These include the suggestion of a role for the T-type and N-type calcium channels during single spikes and repetitive firing in phrenic motor neurons, as well as a better understanding of network properties underlying respiratory rhythm generation. We also utilized an existing model of lung mechanics to study the interactions between the respiratory central pattern generator and ventilation. ^
Resumo:
Divergence of anterior-posterior (AP) limb pattern and differences in vertebral column morphology are the two main examples of mammalian evolution. The Hox genes (homeobox containing gene) have been implicated in driving evolution of these structures. However, regarding Hox genes, how they contribute to the generation of mammalian morphological diversities, is still unclear. Implementing comparative gene expression and phenotypic rescue studies for different mammalian Hox genes could aid in unraveling this mystery. In the first part of this thesis, the expression pattern of Hoxd13 gene, a key Hox gene in the establishment of the limb AP pattern, was examined in developing limbs of bats and mice. Bat forelimbs exhibit a pronounced asymmetric AP pattern and offer a good model to study the molecular mechanisms that contribute to the variety of mammalian limbs. The data showed that the expression domain of bat Hoxd13 was shifted prior to the asymmetric limb plate expansion, whereas its domain in mice was much more symmetric. This finding reveals a correlation between the divergence of Hoxd13 expression and the AP patterning difference in limb development. The second part of this thesis details a phenotypic rescue approach by human HOXB1-9 transgenes in mice with Hoxb1-9 deletion, The mouse mutants displayed homeosis in cervical and anterior thoracic vertebrae. The human transgenes entirely rescued the mouse mutants, suggesting that these human HOX genes have similar functions to their mouse orthologues in anterior axial skeletal patterning. The anterior expressing human HOXB transgenes such as HOXB1-3 were expressed in the mouse embryonic trunk in a similar manner as their murine orthologues. However, the anterior boundary of human HOXB9 expression domain was more posterior than that of the mouse Hoxb9 by 2-3 somites. These data provide the molecular support for the hypothesis that Hox genes are responsible for maintaining similar anterior axial skeletal architectures cervical and anterior thoracic regions, but different architectures in lumbar and posterior thoracic regions between humans and mice. ^
Resumo:
The state of knowledge on the relation of stress factors, health problems and health service utilization among university students is limited. Special problems of stress exist for the international students due to their having to adjust to a new environment. It is this latter problem area that provides the focus for this study. Recognizing there are special stress factors affecting the international students, it is first necessary to see if the problems of cultural adaptation affect them to any greater degree than American students attending the same university.^ To make the comparison, the study identified a number of health problems of both American and international students and related their frequency to the use of the Student Health Center. The expectation was that there would be an association between the number of health problems and the number of life change events experienced by these students and between the number of health problems and stresses from social factors. It was also expected that the number of health problems would decline with the amount of social support.^ The population chosen were students newly enrolled in Texas Southern University, Houston, Texas in the Fall Semester of 1979. Two groups were selected at random: 126 international and 126 American students. The survey instrument was a self-administered questionnaire. The response rate was 90% (114) for the international and 94% (118) for the American students.^ Data analyses consisted of both descriptive and inferential statistics. Chi-squares and correlation coefficients were the statistics used in comparing the international students and the American students.^ There was a weak association between the number of health problems and the number of life change events, as reported by both the international and the American students. The study failed to show any statistically significant association between the number of stress from social factors and the number of health problems. It also failed to show an association between the number of health problems and the amount of social support. These findings applied to both the international and the American students.^ One unexpected finding was that certain health problems were reported by more American than international students. There were: cough, diarrhea, and trouble in sleeping. Another finding was that those students with health insurance had a higher level of utilization of the Health Center than those without health insurance. More international than American students utilized the Student Health Center.^ In comparing the women students, there was no statistical significant difference in their reported fertility related health problems.^ The investigator recommends that in follow-up studies, instead of grouping all international students together, that they be divided by major nationalities represented in the student body; that is, Iranians, Nigerians and others. ^
Resumo:
The taxonomy of Antarctic fishes has been predominantly based on morphological characteristics rather than on genetic criteria. A typical example is the Notothenia group, which includes N. coriiceps Richardson, 1844, N. neglecta Nybelin, 1951 and N. rossii Richardson, 1844. The Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to determine whether N. coriiceps Richardson, 1844 and N. neglecta Nybelin, 1951 are different or whether they are the same species with morphological, physiological and behavioural variability. N. rossii was used as control. Mitochondrial DNA (mtDNA) was isolated from muscle specimens of N. coriiceps Richardson, 1844, N. neglecta Nybelin, 1951 and N. rossii, which were collected in Admiralty Bay, King George Island. The DNA was used to amplify a fragment (690 base pairs) of the mitochondrial gene coding region of NADH dehydrogenase subunit 2. Further, the amplicon was digested with the following restriction enzymes: DdeI, HindIII and RsaI. The results showed a variation of the digestion pattern of the fragment amplified between N. rossii, and N. coriiceps Richardson, 1844 or N. neglecta Nybelin, 1951. However, no differences were found between N. coriiceps Richardson, 1844 and N. neglecta Nybelin, 1951, on the grounds of the same genetic pattern shown by the two fish.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.
Resumo:
Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.
Resumo:
Although there are numerous accurate measuring methods to determine soil moisture content in a spot, until very recently there were no precise in situ and in real time methods that were able to measure soil moisture content along a line. By means of the Distributed Fiber Optic Temperature Measurement method or DFOT, the temperature in 0.12 m intervals and long distances (up to 10,000 m) with a high time frequency and an accuracy of +0.2º C is determined. The principle of temperature measurement along a fiber optic cable is based on the thermal sensitivity of the relative intensities of backscattered photons that arise from collisions with electrons in the core of the glass fiber. A laser pulse, generated by the DTS unit, traversing a fiber optic cable will result in backscatter at two frequencies. The DTS quantifies the intensity of these backscattered photons and elapsed time between the pulse and the observed returned light. The intensity of one of the frequencies is strongly dependent on the temperature at the point where the scattering process occurred. The computed temperature is attributed to the position along the cable from which the light was reflected, computed from the time of travel for the light.
Resumo:
The contributions of driver behaviour as well as surrounding infrastructure are decisive on pollutant emissions from vehicles in real traffic situations. This article deals with the preliminary study of the interaction between the dynamic variables recorded in a vehicle (driving pattern) and pollutant emissions produced over a given urban route. It has been established a “dynamic performance index”-DPI, which is calculated from some driving pattern parameters, which in turn depends on traffic congestion level and route characteristics, in order to determine whether the driving has been aggressive, normal or calm. Two passenger cars instrumented with a portable activity measurement system -to record dynamic variables- and on-board emission measurement equipment have been used. This study has shown that smooth driving patterns can reduce up to 80% NOX emissions and up to 20% of fuel in the same route
Resumo:
This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.