979 resultados para Pathogen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, N-acylhomoserine lactone signals regulate the expression of several hundreds of genes, via the transcriptional regulator LasR and, in part, also via the subordinate regulator RhlR. This regulatory network termed quorum sensing contributes to the virulence of P. aeruginosa as a pathogen. The fact that two supposed PAO1 wild-type strains from strain collections were found to be defective for LasR function because of independent point mutations in the lasR gene led to the hypothesis that loss of quorum sensing might confer a selective advantage on P. aeruginosa under certain environmental conditions. A convenient plate assay for LasR function was devised, based on the observation that lasR mutants did not grow on adenosine as the sole carbon source because a key degradative enzyme, nucleoside hydrolase (Nuh), is positively controlled by LasR. The wild-type PAO1 and lasR mutants showed similar growth rates when incubated in nutrient yeast broth at pH 6.8 and 37 degrees C with good aeration. However, after termination of growth during 30 to 54 h of incubation, when the pH rose to > or = 9, the lasR mutants were significantly more resistant to cell lysis and death than was the wild type. As a consequence, the lasR mutant-to-wild-type ratio increased about 10-fold in mixed cultures incubated for 54 h. In a PAO1 culture, five consecutive cycles of 48 h of incubation sufficed to enrich for about 10% of spontaneous mutants with a Nuh(-) phenotype, and five of these mutants, which were functionally complemented by lasR(+), had mutations in lasR. The observation that, in buffered nutrient yeast broth, the wild type and lasR mutants exhibited similar low tendencies to undergo cell lysis and death suggests that alkaline stress may be a critical factor providing a selective survival advantage to lasR mutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-18 (IL-18) plays an important role in innate and acquired immunity, in particular against intracellular pathogens. However, little is known about the microbial factors that trigger IL-18 secretion by dendritic cells (DCs). To determine the influence of bacterial virulence factors on the activation and release of IL-18, we infected human monocyte-derived DCs with virulence mutants of the facultative intracellular pathogen Salmonella typhimurium. Our results show that infection by S. typhimurium causes caspase-1-dependent activation of IL-18 and triggers the release of IL-18 in human DCs. The secretion of IL-18 by the DCs was closely correlated with the ability of the S. typhimurium strains to induce apoptosis. We demonstrate that activation and release of IL-18 are blocked by mutations in the Salmonella sipB gene, which encodes a virulence factor that activates caspase-1 to induce apoptosis. These findings indicate that the activation and release of IL-18 induced by bacterial virulence factors may represent one component of innate immunity against the intracellular bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenicity of Chlamydia and Chlamydia-related bacteria could be partially mediated by an enhanced activation of the innate immune response. The study of this host pathogen interaction has proved challenging due to the restricted in vitro growth of these strict intracellular bacteria and the lack of genetic tools to manipulate their genomes. Despite these difficulties, the interactions of Chlamydiales with the innate immune cells and their effectors have been studied thoroughly. This review aims to point out the role of pattern recognition receptors and signal molecules (cytokines, reactive oxygen species) of the innate immune response in the pathogenesis of chlamydial infection. Besides inducing clearance of the bacteria, some of these effectors may be used by the Chlamydia to establish chronic infections or to spread. Thus, the induced innate immune response seems to be variable depending on the species and/or the serovar, making the pattern more complex. It remains crucial to determine the common players of the innate immune response in order to help define new treatment strategies and to develop effective vaccines. The excellent growth in phagocytic cells of some Chlamydia-related organisms such as Waddlia chondrophila supports their use as model organisms to study conserved features important for interactions between the innate immunity and Chlamydia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are intracellular proteins mainly involved in pathogen recognition, inflammatory responses, and cell death. Until recently, the function of the family member NLR caspase recruitment domain (CARD) containing 5 (NLRC5) has been a matter of debate. It is now clear that NLRC5 acts as a transcriptional regulator of the major-histocompatibility complex class I. In this review we detail the development of our understanding of NLRC5 function, discussing both the accepted and the controversial aspects of NLRC5 activity. We give insight into the molecular mechanisms, and the potential implications, of NLRC5 function in health and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Toll-like receptors (TLR) recognize a variety of ligands, including pathogen-associated molecular patterns and link innate and adaptive immunity. Individual receptors can be up-regulated during infection and inflammation. We examined the expression of selected TLRs at the protein level in various types of renal disease.Methods. Frozen sections of renal biopsies were stained with monoclonal antibodies to TLR-2, -4 and -9.Results. Up-regulation of the three TLRs studied was seen, although the extent was modest. TLR-2- and -4-positive cells belonged to the population of infiltrating inflammatory cells; only in the case of TLR-9 were intrinsic glomerular cells positive in polyoma virus infection and haemolytic uraemic syndrome (HUS).Conclusions. Evidence for the involvement of the three TLRs tested in a variety of human renal diseases was found. These findings add to our understanding of the role of the innate immune system in kidney disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L.) + vetch (Vicia sativa L.)/maize (Zea mays L.) + cowpea (Vigna sinensis L.), black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA). A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytomegalovirus (CMV) is generally considered the most significant pathogen to infect patients following organ transplantation. Significant improvements have been achieved in the management of CMV disease over recent years, especially since the introduction of oral drugs such as oral ganciclovir followed by valganciclovir (VGC), a prodrug of ganciclovir with enhanced bioavailability. Several randomized controlled trials have shown that VGC is an efficacious and convenient oral drug to prevent or treat CMV disease in solid-organ transplant recipients. In this article, we discuss the clinical and pharmacological experience with the use of VGC for the management of CMV in solid-organ transplant recipients. Finally, novel strategies to further reduce the incidence of CMV disease after transplantation are also reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of Pseudomonas aeruginosa isolated in sputum cultures from adults with obstructive chronic pulmonary disease (COPD) is not well known. However, this pathogen has many factors of virulence and is responsible for several clinical manifestations in this setting. Isolation of a new strain of Pseudomonas is associated with a significant risk of exacerbation of the COPD and its prevalence depends on the severity of the COPD. The role of Pseudomonas among patients with COPD apart from exacerbations is less clear, but it could be responsible for an ignition for the airways and progression for the disease. Currently, the relevance of a prophylactic antibiotic therapy has not yet been demonstrated in COPD holders of Pseudomonas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Trichoderma species are non-pathogenic microorganisms that protect against fungal diseases and contribute to increased crop yields. However, not all Trichoderma species have the same effects on crop or a pathogen, whereby the characterization and identification of strains at the species level is the first step in the use of a microorganism. The aim of this study was the identification – at species level – of five strains of Trichoderma isolated from soil samples obtained from garlic and onion fields located in Costa Rica, through the analysis of the ITS1, 5.8S, and ITS2 ribosomal RNA regions; as well as the determination of their individual antagonistic ability over S. cepivorum Berkeley. In order to distinguish the strains, the amplified products were analyzed using MEGA v6.0 software, calculating the genetic distances through the Tamura-Nei model and building the phylogenetic tree using the Maximum Likelihood method. We established that the evaluated strains belonged to the species T. harzianum and T. asperellum; however it was not possible to identify one of the analyzed strains based on the species criterion. To evaluate their antagonistic ability, the dual culture technique, Bell’s scale, and the percentage inhibition of radial growth (PIRG) were used, evidencing that one of the T. asperellum isolates presented the best yields under standard, solid fermentation conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past decades, transfusion medicine has been driven by the quest for increased safety against transfusion-transmitted infections, mainly by better donor selection and by the development of improved serological and nucleic-acid-based screening assays. Recently, pathogen reduction technologies became available and started to be implemented in several countries, with the primary goal to fight against bacterial contamination of blood products, a rare but dramatic event against which there was no definitive measure. Though pathogen reduction technologies represent a quantum leap in transfusion safety, the biomedical efficacy of platelet concentrates (PCs) treated with various pathogen reduction techniques has been recently questioned by clinical studies. Here, a gel-based proteomic analysis of PCs (n=5), Intercept-treated or untreated, from pooled buffy-coat (10 donors per PC) at Days 1, 2 and 8, shows that the Intercept process that is the most widespread pathogen reduction technique to date, has relatively low impact on the proteome of treated platelets: the process induces modifications of DJ-1 protein, glutaredoxin 5, and G(i)alpha 2 protein. As for the impact of storage, chloride intracellular channel protein 4 (CLIC4) and actin increased independently of Intercept treatment during storage. Whereas alteration of the DJ-1 protein and glutaredoxin 5 points out an oxidative stress-associated lesion, modification of G(i)alpha2 directly connects a possible Intercept-associated lesion to haemostatic properties of Intercept-treated platelets. This article is part of a Special Issue entitled: Integrated omics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME Pour favoriser sa croissance en condition limitante de fer, le pathogène opportunistePseudomonas aeruginosa PAO1 sécrète un sidérophore nommé pyochéline. Celui-ci estproduit par un mécanisme de "thiotemplate", à partir de l'acide salicylique et de deuxmolécules de cystéine, et existe sous forme d'une paire de diastéréoisomèresinterconvertibles: pyochéline I (4'R, 2?R, 4?R) et pyochéline II (4'R, 2?S, 4?R). Deprécédentes études ont montré que la pyochéline induit l'expression de ses propres gènes debiosynthèse via le régulateur transcriptionnel PchR qui appartient à la famille AraC/XylS. Lapyochéline est donc non seulement un sidérophore mais également une molécule signale.Nous avons découvert que Pseudomonas fluorescens CHA0 sécrète une pyochélinestéréochimiquement distincte de celle produite par P. aeruginosa. Ce nouveau sidérophorefavorise la croissance de P. fluorescens en condition limitante en fer et induit l'expression deses propres gènes de biosynthèse. Cependant, cette molécule n'est pas reconnue commesidérophore ou molécule signale par P. aeruginosa. Réciproquement, la pyochéline estincapable de stimuler la croissance et la signalisation chez P. fluorescens. La structure dusiderophore de P. fluorescens CHA0 a été déterminée comme étant un antipode optique de lapyochéline et nommé énantio-pyochéline.La stéréospécificité de l'induction des gènes de biosynthèse de la pyochéline/énantiopyochélineest basée sur la stéréospécificité des protéines PchR de P. aeruginosa et P.fluorescens envers leur sidérophores-ligands respectifs. PchR est fonctionnel chez l'espècehétérologue, mais uniquement en présence de son propre ligand. Les récepteurs spécifiquesdes sidérophores pyochéline/enantio-pyochéline ne sont pas indispensables à la signalisationmais sont essentiels à l'incorporation du fer et à la croissance en carence de fer. Laconstruction de protéines hybrides et tronquées a révélé que le domaine N-terminal de PchRest l'élément déterminant pour la spécificité de la protéine vis-à-vis de son ligand. SUMMARY : The siderophore pyochelin is produced by the opportunistic pathogen Pseudomonas aeruginosa PAO1 and promotes growth under iron limitation. Pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine and exists as a pair of interconvertible diastereoisomers: pyochelin I (4'R, 2"R, 4"R) and pyochelin II (4'R, 2"S, 4"R). Pyochelin induces the expression of its biosynthesis and uptake genes via the transcriptional AraC/Xy1S family regulator PchR in a process termed pyochelin signaling. Pseudomonas fluorescens CHAO was found to make a stereochemically distinct pyochelin to P. aeruginosa. This siderophore promoted the growth of P. fluorescens under iron limitation and induced the expression of its biosynthesis genes but was not recognised as a siderophore or signaling molecule by P. aeruginosa. Reciprocally, pyochelin was unable to promote growth or signaling in P. fluorescens. The structure of the P. fluorescens CHAO siderophore was determined and found to be enantio-pyochelin, the optical antipode of pyochelin. Stereospecificity in induction of pyochelin/enantio-pyochelin biosynthesis genes was found to be due to stereospecificity of the homologous PchR proteins of P. aeruginosa and P. fluorescens towards their respective siderophore ligands. PchR was able to function in the heterologous species, but only if supplied with its native ligand. The pyochelin/enantiopyochelin receptors were not essential for signaling although both receptors are essential for iron uptake and growth under iron limitation. Construction of hybrid and truncated PchR proteins revealed that the N-terminal domain of PchR is responsible for siderophore recognition/stereospecificity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current literature on the role of interleukin (IL)-2 in memory CD8(+) T-cell differentiation indicates a significant contribution of IL-2 during primary and also secondary expansion of CD8(+) T cells. IL-2 seems to be responsible for optimal expansion and generation of effector functions following primary antigenic challenge. As the magnitude of T-cell expansion determines the numbers of memory CD8(+) T cells surviving after pathogen elimination, these events influence memory cell generation. Moreover, during the contraction phase of an immune response where most antigen-specific CD8(+) T cells disappear by apoptosis, IL-2 signals are able to rescue CD8(+) T cells from cell death and provide a durable increase in memory CD8(+) T-cell counts. At the memory stage, CD8(+) T-cell frequencies can be boosted by administration of exogenous IL-2. Significantly, only CD8(+) T cells that have received IL-2 signals during initial priming are able to mediate efficient secondary expansion following renewed antigenic challenge. Thus, IL-2 signals during different phases of an immune response are key in optimizing CD8(+) T-cell functions, thereby affecting both primary and secondary responses of these T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compounds containing alpha,beta-unsaturated carbonyl groups are increasingly implicated as potent regulators of gene expression; some are powerful cytotoxins known to accumulate at the site of lesion formation in host-pathogen interactions. We used a robust measurement of photosynthetic efficiency to quantify the toxicity of a variety of lipid derivatives in Arabidopsis leaves. Small alpha,beta-unsaturated carbonyl compounds (e.g. acrolein and methyl vinyl ketone) were highly active and proved to be potent stimulators of expression of the pathogenesis-related gene HEL (PR4). These small volatile electrophiles were far more active than larger alkenal homologs like 2(E)-hexenal, and activated HEL expression in a manner independent of salicylate, ethylene, and jasmonate production/perception. Electrophile treatment massively increased the levels of unesterified cyclopentenone jasmonates, which themselves are electrophiles. Patterns of gene expression in response to electrophile treatment and in response to avirulent bacteria were compared, which revealed strikingly similar transcript profiles. The results broaden the range of known biologic effects of reactive electrophile species to include the activation of a pathogenesis-related gene (HEL) and genes involved in metabolism. Electrophiles can act as mediators of both genetic and biochemical effects on core defense signal transduction.