853 resultados para Passive tracking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a real-time tracking strategy based on direct methods for tracking tasks on-board UAVs, that is able to overcome problems posed by the challenging conditions of the task: e.g. constant vibrations, fast 3D changes, and limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations where part of the object to track is out the field of view of the camera. The performance of the proposed strategy is evaluated with images from real-flight tests using different evaluation mechanisms (e.g. accurate position estimation using a Vicon sytem). Results show that our tracking strategy performs better than well known feature-based algorithms and well known configurations of direct methods, and that the recovered data is robust enough for vision-in-the-loop tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of existing studies about LCA of PV systems has been carried out. The data from this review have been completed with our own figures in order to calculate the Energy Payback Time of double and horizontal axis tracking and fixed systems. The results of this metric span from 2 to 5 years for the latitude and global irradiation ranges of the geographical area comprised between −10◦ to 10◦ of longitude, and 30◦ to 45◦ of latitude. With the caution due to the uncertainty of the sources of information, these results mean that a GCPVS is able to produce back the energy required for its existence from 6 to 15 times during a life cycle of 30 years. When comparing tracking and fixed systems, the great importance of the PV generator makes advisable to dedicate more energy to some components of the system in order to increase the productivity and to obtain a higher performance of the component with the highest energy requirement. Both double axis and horizontal axis trackers follow this way, requiring more energy in metallic structure, foundations and wiring, but this higher contribution is widely compensated by the improved productivity of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the concept of tracking integration in concentrating photovoltaics (CPV) is revisited and developed further. With respect to conventional CPV, tracking integration eliminates the clear separation between stationary units of optics and solar cells, and external solar trackers. This approach is capable of further increasing the concentration ratio and makes high concentrating photovoltaics (> 500x) available for single-axis tracker installations. The reduced external solar tracking effort enables possibly cheaper and more compact installations. Our proposed optical system uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. The lateral movement allows to combine both steering and concentration of the incident direct sun light. Given the specific symmetry conditions of the underlying optical design problem, rotational symmetric lenses are not ideal for this application. For this type of design problems, a new free-form optics design method presented in previous papers perfectly matches the symmetry. It is derived directly from Fermat's principle, leading to sets of functional differential equations allowing the successive calculation of the Taylor series coeficients of each implicit surface function up to very high orders. For optical systems designed for wide field of view and with clearly separated optical surfaces, this new analytic design method has potential application in both fields of nonimaging and imaging optics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A notorious advantage of wireless transmission is a significant reduction and simplification in wiring and harness. There are a lot of applications of wireless systems, but in many occasions sensor nodes require a specific housing to protect the electronics from hush environmental conditions. Nowadays the information is scarce and nonspecific on the dynamic behaviour of WSN and RFID. Therefore the purpose of this study is to evaluate the dynamic behaviour of the sensors. A series of trials were designed and performed covering temperature steps between cold room (5 °C), room temperature (23 °C) and heated environment (35 °C). As sensor nodes: three Crossbow motes, a surface mounted Nlaza module (with sensor Sensirion located on the motherboard), an aerial mounted Nlaza where the Sensirion sensor stayed at the end of a cable), and four tags RFID Turbo Tag (T700 model with and without housing), and 702-B (with and without housing). To assess the dynamic behaviour a first order response approach is used and fitted with dedicated optimization tools programmed in Matlab that allow extracting the time response (?) and corresponding determination coefficient (r2) with regard to experimental data. The shorter response time (20.9 s) is found for the uncoated T 700 tag which encapsulated version provides a significantly higher response (107.2 s). The highest ? corresponds to the Crossbow modules (144.4 s), followed by the surface mounted Nlaza module (288.1 s), while the module with aerial mounted sensor gives a response certainly close above to the T700 without coating (42.8 s). As a conclusion, the dynamic response of temperature sensors within wireless and RFID nodes is dramatically influenced by the way they are housed (to protect them from the environment) as well as by the heat released by the node electronics itself; its characterization is basic to allow monitoring of high rate temperature changes and to certify the cold chain. Besides the time to rise and to recover is significantly different being mostly higher for the latter than for the former.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El principal objetivo de esta tesis es dotar a los vehículos aéreos no tripulados (UAVs, por sus siglas en inglés) de una fuente de información adicional basada en visión. Esta fuente de información proviene de cámaras ubicadas a bordo de los vehículos o en el suelo. Con ella se busca que los UAVs realicen tareas de aterrizaje o inspección guiados por visión, especialmente en aquellas situaciones en las que no haya disponibilidad de estimar la posición del vehículo con base en GPS, cuando las estimaciones de GPS no tengan la suficiente precisión requerida por las tareas a realizar, o cuando restricciones de carga de pago impidan añadir sensores a bordo de los vehículos. Esta tesis trata con tres de las principales áreas de la visión por computador: seguimiento visual y estimación visual de la pose (posición y orientación), que a su vez constituyen la base de la tercera, denominada control servo visual, que en nuestra aplicación se enfoca en el empleo de información visual para controlar los UAVs. Al respecto, esta tesis se ocupa de presentar propuestas novedosas que permitan solucionar problemas relativos al seguimiento de objetos mediante cámaras ubicadas a bordo de los UAVs, se ocupa de la estimación de la pose de los UAVs basada en información visual obtenida por cámaras ubicadas en el suelo o a bordo, y también se ocupa de la aplicación de las técnicas propuestas para solucionar diferentes problemas, como aquellos concernientes al seguimiento visual para tareas de reabastecimiento autónomo en vuelo o al aterrizaje basado en visión, entre otros. Las diversas técnicas de visión por computador presentadas en esta tesis se proponen con el fin de solucionar dificultades que suelen presentarse cuando se realizan tareas basadas en visión con UAVs, como las relativas a la obtención, en tiempo real, de estimaciones robustas, o como problemas generados por vibraciones. Los algoritmos propuestos en esta tesis han sido probados con información de imágenes reales obtenidas realizando pruebas on-line y off-line. Diversos mecanismos de evaluación han sido empleados con el propósito de analizar el desempeño de los algoritmos propuestos, entre los que se incluyen datos simulados, imágenes de vuelos reales, estimaciones precisas de posición empleando el sistema VICON y comparaciones con algoritmos del estado del arte. Los resultados obtenidos indican que los algoritmos de visión por computador propuestos tienen un desempeño que es comparable e incluso mejor al de algoritmos que se encuentran en el estado del arte. Los algoritmos propuestos permiten la obtención de estimaciones robustas en tiempo real, lo cual permite su uso en tareas de control visual. El desempeño de estos algoritmos es apropiado para las exigencias de las distintas aplicaciones examinadas: reabastecimiento autónomo en vuelo, aterrizaje y estimación del estado del UAV. Abstract The main objective of this thesis is to provide Unmanned Aerial Vehicles (UAVs) with an additional vision-based source of information extracted by cameras located either on-board or on the ground, in order to allow UAVs to develop visually guided tasks, such as landing or inspection, especially in situations where GPS information is not available, where GPS-based position estimation is not accurate enough for the task to develop, or where payload restrictions do not allow the incorporation of additional sensors on-board. This thesis covers three of the main computer vision areas: visual tracking and visual pose estimation, which are the bases the third one called visual servoing, which, in this work, focuses on using visual information to control UAVs. In this sense, the thesis focuses on presenting novel solutions for solving the tracking problem of objects when using cameras on-board UAVs, on estimating the pose of the UAVs based on the visual information collected by cameras located either on the ground or on-board, and also focuses on applying these proposed techniques for solving different problems, such as visual tracking for aerial refuelling or vision-based landing, among others. The different computer vision techniques presented in this thesis are proposed to solve some of the frequently problems found when addressing vision-based tasks in UAVs, such as obtaining robust vision-based estimations at real-time frame rates, and problems caused by vibrations, or 3D motion. All the proposed algorithms have been tested with real-image data in on-line and off-line tests. Different evaluation mechanisms have been used to analyze the performance of the proposed algorithms, such as simulated data, images from real-flight tests, publicly available datasets, manually generated ground truth data, accurate position estimations using a VICON system and a robotic cell, and comparison with state of the art algorithms. Results show that the proposed computer vision algorithms obtain performances that are comparable to, or even better than, state of the art algorithms, obtaining robust estimations at real-time frame rates. This proves that the proposed techniques are fast enough for vision-based control tasks. Therefore, the performance of the proposed vision algorithms has shown to be of a standard appropriate to the different explored applications: aerial refuelling and landing, and state estimation. It is noteworthy that they have low computational overheads for vision systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite that Critical Infrastructures (CIs) security and surveillance are a growing concern for many countries and companies, Multi Robot Systems (MRSs) have not been yet broadly used in this type of facilities. This dissertation presents a novel study of the challenges arisen by the implementation of this type of systems and proposes solutions to specific problems. First, a comprehensive analysis of different types of CIs has been carried out, emphasizing the influence of the different characteristics of the facilities in the design of a security and surveillance MRS. One of the most important needs for the surveillance of a CI is the detection of intruders. From a technical point of view this problem can be abstracted as equivalent to the Detection and Tracking of Mobile Objects (DATMO). This dissertation proposes algorithms to solve this specific problem in a CI environment. Using 3D range images of the environment as input data, two detection algorithms for ground robots have been developed. These detection algorithms provide a list of moving objects in the robot detection area. Direct image differentiation and computer vision techniques are used when the robot is static. Alternatively, multi-layer ground reconstructions are compared to detect the dynamic objects when the robot is moving. Since CIs usually spread over large areas, it is very useful to incorporate aerial vehicles in the surveillance MRS. Therefore, a moving object detection algorithm for aerial vehicles has been also developed. This algorithm compares the real optical flow obtained from a down-face oriented camera with an artificial optical flow computed using a RANSAC based homography matrix. Two tracking algorithms have been developed to follow the moving objects trajectories. These algorithms can efficiently handle occlusions and crossings, as well as exchange information among robots. The multirobot tracking can be applied to any type of communication structure: centralized, decentralized or a combination of both. Even more, the developed tracking algorithms are independent of the detection algorithms and could be potentially used with other detection procedures or even with static sensors, such as cameras. In addition, using the 3D point clouds available to the robots, a relative localization algorithm has been developed to improve the position estimation of a given robot with observations from other robots. All the developed algorithms have been extensively tested in different simulated CIs using the Webots robotics simulator. Furthermore, the algorithms have also been validated with real robots operating in real scenarios. In conclusion, this dissertation presents a multirobot approach to Critical Infrastructure Surveillance, mainly focusing on Detecting and Tracking Dynamic Objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main obstacles to the widespread adoption of quantum cryptography has been the difficulty of integration into standard optical networks, largely due to the tremendous difference in power of classical signals compared with the single quantum used for quantum key distribution. This makes the technology expensive and hard to deploy. In this letter, we show an easy and straightforward integration method of quantum cryptography into optical access networks. In particular, we analyze how a quantum key distribution system can be seamlessly integrated in a standard access network based on the passive optical and time division multiplexing paradigms. The novelty of this proposal is based on the selective post-processing that allows for the distillation of secret keys avoiding the noise produced by other network users. Importantly, the proposal does not require the modification of the quantum or classical hardware specifications neither the use of any synchronization mechanism between the network and quantum cryptography devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we apply a hierarchical tracking strategy of planar objects (or that can be assumed to be planar) that is based on direct methods for vision-based applications on-board UAVs. The use of this tracking strategy allows to achieve the tasks at real-time frame rates and to overcome problems posed by the challenging conditions of the tasks: e.g. constant vibrations, fast 3D changes, or limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations in which part of the object to track is outside of the field of view of the camera. The performance of the proposed tracking strategy on-board UAVs is evaluated with images from realflight tests using manually-generated ground truth information, accurate position estimation using a Vicon system, and also with simulated data from a simulation environment. Results show that the hierarchical tracking strategy performs better than wellknown feature-based algorithms and well-known configurations of direct methods, and that its performance is robust enough for vision-in-the-loop tasks, e.g. for vision-based landing tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper an on line self-tuned PID controller is proposed for the control of a car whose goal is to follow another one, at distances and speeds typical in urban traffic. The bestknown tuning mechanism is perhaps the MIT rule, due to its ease of implementation. However, as it is well known, this method does not guarantee the stability of the system, providing good results only for constant or slowly varying reference signals and in the absence of noise, which are unrealistic conditions. When the reference input varies with an appreciable rate or in presence of noise, eventually it could result in system instability. In this paper an alternative method is proposed that significantly improves the robustness of the system for varying inputs or in the presence of noise, as demonstrated by simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum cryptography in communications networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present an innovative technique to tackle the problem of automatic road sign detection and tracking using an on-board stereo camera. It involves a continuous 3D analysis of the road sign during the whole tracking process. Firstly, a color and appearance based model is applied to generate road sign candidates in both stereo images. A sparse disparity map between the left and right images is then created for each candidate by using contour-based and SURF-based matching in the far and short range, respectively. Once the map has been computed, the correspondences are back-projected to generate a cloud of 3D points, and the best-fit plane is computed through RANSAC, ensuring robustness to outliers. Temporal consistency is enforced by means of a Kalman filter, which exploits the intrinsic smoothness of the 3D camera motion in traffic environments. Additionally, the estimation of the plane allows to correct deformations due to perspective, thus easing further sign classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.