988 resultados para Paisatge -- Modificacions -- Catalunya -- Girona (Província) -- S. XX
Resumo:
The amalgamation operation is frequently used to reduce the number of parts of compositional data but it is a non-linear operation in the simplex with the usual geometry, the Aitchison geometry. The concept of balances between groups, a particular coordinate system designed over binary partitions of the parts, could be an alternative to the amalgamation in some cases. In this work we discuss the proper application of both concepts using a real data set corresponding to behavioral measures of pregnant sows
Resumo:
Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult to achieve because the relative values of the forecast components often fail to behave in a way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It has been shown that cause-specic mortality forecasts are pessimistic when compared with all-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approach of using log mortality rates and forecasts the density of deaths in the life table. Since these values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbing state), they are intrinsically relative rather than absolute values across decrements as well as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison (1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that the unit sum constraint is honoured. The structure of the best-known, single-decrement mortality-rate forecasting model, devised by Lee and Carter (1992), is expressed in compositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortality by cause of death for Japan
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence of a composition with a categorical variable, a colored set of ternary diagrams might be a good idea for a first look at the data, but it will fast hide important aspects if the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the conventional, black-box ilr is used. Thinking on terms of the Euclidean structure of the simplex, we suggest to set up appropriate projections, which on one side show the compositional geometry and on the other side are still comprehensible by a non-expert analyst, readable for all locations and scales of the data. This is e.g. done by defining special balance displays with carefully- selected axes. Following this idea, we need to systematically ask how to display, explore, describe, and test the relation to complementary or explanatory data of categorical, real, ratio or again compositional scales. This contribution shows that it is sufficient to use some basic concepts and very few advanced tools from multivariate statistics (principal covariances, multivariate linear models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate analysis
Resumo:
The quantitative estimation of Sea Surface Temperatures from fossils assemblages is a fundamental issue in palaeoclimatic and paleooceanographic investigations. The Modern Analogue Technique, a widely adopted method based on direct comparison of fossil assemblages with modern coretop samples, was revised with the aim of conforming it to compositional data analysis. The new CODAMAT method was developed by adopting the Aitchison metric as distance measure. Modern coretop datasets are characterised by a large amount of zeros. The zero replacement was carried out by adopting a Bayesian approach to the zero replacement, based on a posterior estimation of the parameter of the multinomial distribution. The number of modern analogues from which reconstructing the SST was determined by means of a multiple approach by considering the Proxies correlation matrix, Standardized Residual Sum of Squares and Mean Squared Distance. This new CODAMAT method was applied to the planktonic foraminiferal assemblages of a core recovered in the Tyrrhenian Sea. Kew words: Modern analogues, Aitchison distance, Proxies correlation matrix, Standardized Residual Sum of Squares
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developed to explore patterns in high-dimensional multivariate data. The conventional version of the algorithm involves the use of Euclidean metric in the process of adaptation of the model vectors, thus rendering in theory a whole methodology incompatible with non-Euclidean geometries. In this contribution we explore the two main aspects of the problem: 1. Whether the conventional approach using Euclidean metric can shed valid results with compositional data. 2. If a modification of the conventional approach replacing vectorial sum and scalar multiplication by the canonical operators in the simplex (i.e. perturbation and powering) can converge to an adequate solution. Preliminary tests showed that both methodologies can be used on compositional data. However, the modified version of the algorithm performs poorer than the conventional version, in particular, when the data is pathological. Moreover, the conventional ap- proach converges faster to a solution, when data is \well-behaved". Key words: Self Organizing Map; Artificial Neural networks; Compositional data
Resumo:
In Catalonia, according to the nitrate directive (91/676/EU), nine areas have been declared as vulnerable to nitrate pollution from agricultural sources (Decret 283/1998 and Decret 479/2004). Five of these areas have been studied coupling hydro chemical data with a multi-isotopic approach (Vitòria et al. 2005, Otero et al. 2007, Puig et al. 2007), in an ongoing research project looking for an integrated application of classical hydrochemistry data, with a comprehensive isotopic characterisation (δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δD and δ18O of water). Within this general frame, the contribution presented explores compositional ways of: (i) distinguish agrochemicals and manure N pollution, (ii) quantify natural attenuation of nitrate (denitrification), and identify possible controlling factors. To achieve this two-fold goal, the following techniques have been used. Separate biplots of each suite of data show that each studied region has a distinct δ34S and pH signatures, but they are homogeneous with regard to NO3- related variables. Also, the geochemical variables were projected onto the compositional directions associated with the possible denitrification reactions in each region. The resulting balances can be plot together with some isotopes, to assess their likelihood of occurrence
Resumo:
In most psychological tests and questionnaires, a test score is obtained by taking the sum of the item scores. In virtually all cases where the test or questionnaire contains multidimensional forced-choice items, this traditional scoring method is also applied. We argue that the summation of scores obtained with multidimensional forced-choice items produces uninterpretable test scores. Therefore, we propose three alternative scoring methods: a weak and a strict rank preserving scoring method, which both allow an ordinal interpretation of test scores; and a ratio preserving scoring method, which allows a proportional interpretation of test scores. Each proposed scoring method yields an index for each respondent indicating the degree to which the response pattern is inconsistent. Analysis of real data showed that with respect to rank preservation, the weak and strict rank preserving method resulted in lower inconsistency indices than the traditional scoring method; with respect to ratio preservation, the ratio preserving scoring method resulted in lower inconsistency indices than the traditional scoring method
Resumo:
Our essay aims at studying suitable statistical methods for the clustering of compositional data in situations where observations are constituted by trajectories of compositional data, that is, by sequences of composition measurements along a domain. Observed trajectories are known as “functional data” and several methods have been proposed for their analysis. In particular, methods for clustering functional data, known as Functional Cluster Analysis (FCA), have been applied by practitioners and scientists in many fields. To our knowledge, FCA techniques have not been extended to cope with the problem of clustering compositional data trajectories. In order to extend FCA techniques to the analysis of compositional data, FCA clustering techniques have to be adapted by using a suitable compositional algebra. The present work centres on the following question: given a sample of compositional data trajectories, how can we formulate a segmentation procedure giving homogeneous classes? To address this problem we follow the steps described below. First of all we adapt the well-known spline smoothing techniques in order to cope with the smoothing of compositional data trajectories. In fact, an observed curve can be thought of as the sum of a smooth part plus some noise due to measurement errors. Spline smoothing techniques are used to isolate the smooth part of the trajectory: clustering algorithms are then applied to these smooth curves. The second step consists in building suitable metrics for measuring the dissimilarity between trajectories: we propose a metric that accounts for difference in both shape and level, and a metric accounting for differences in shape only. A simulation study is performed in order to evaluate the proposed methodologies, using both hierarchical and partitional clustering algorithm. The quality of the obtained results is assessed by means of several indices
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing one or more parameters in their definition. Methods that can be linked in this way are correspondence analysis, unweighted or weighted logratio analysis (the latter also known as "spectral mapping"), nonsymmetric correspondence analysis, principal component analysis (with and without logarithmic transformation of the data) and multidimensional scaling. In this presentation I will show how several of these methods, which are frequently used in compositional data analysis, may be linked through parametrizations such as power transformations, linear transformations and convex linear combinations. Since the methods of interest here all lead to visual maps of data, a "movie" can be made where where the linking parameter is allowed to vary in small steps: the results are recalculated "frame by frame" and one can see the smooth change from one method to another. Several of these "movies" will be shown, giving a deeper insight into the similarities and differences between these methods
Resumo:
The preceding two editions of CoDaWork included talks on the possible consideration of densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended the Euclidean structure of the simplex to a Hilbert space structure of the set of densities within a bounded interval, and van den Boogaart (2005) generalized this to the set of densities bounded by an arbitrary reference density. From the many variations of the Hilbert structures available, we work with three cases. For bounded variables, a basis derived from Legendre polynomials is used. For variables with a lower bound, we standardize them with respect to an exponential distribution and express their densities as coordinates in a basis derived from Laguerre polynomials. Finally, for unbounded variables, a normal distribution is used as reference, and coordinates are obtained with respect to a Hermite-polynomials-based basis. To get the coordinates, several approaches can be considered. A numerical accuracy problem occurs if one estimates the coordinates directly by using discretized scalar products. Thus we propose to use a weighted linear regression approach, where all k- order polynomials are used as predictand variables and weights are proportional to the reference density. Finally, for the case of 2-order Hermite polinomials (normal reference) and 1-order Laguerre polinomials (exponential), one can also derive the coordinates from their relationships to the classical mean and variance. Apart of these theoretical issues, this contribution focuses on the application of this theory to two main problems in sedimentary geology: the comparison of several grain size distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock or sediment, like their composition
Resumo:
In this paper we examine the problem of compositional data from a different starting point. Chemical compositional data, as used in provenance studies on archaeological materials, will be approached from the measurement theory. The results will show, in a very intuitive way that chemical data can only be treated by using the approach developed for compositional data. It will be shown that compositional data analysis is a particular case in projective geometry, when the projective coordinates are in the positive orthant, and they have the properties of logarithmic interval metrics. Moreover, it will be shown that this approach can be extended to a very large number of applications, including shape analysis. This will be exemplified with a case study in architecture of Early Christian churches dated back to the 5th-7th centuries AD
Resumo:
It can be assumed that the composition of Mercury’s thin gas envelope (exosphere) is related to the composition of the planets crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind, while Na and K originate from volatilized materials partitioned between Mercury’s crust and meteoritic impactors. The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photonstimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. We will discuss these processes but focus more on the expected surface composition and solar wind particle sputtering which releases material like Ca and other elements from the surface minerals and discuss the relevance of composition modelling
Resumo:
A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr) transformation to obtain the random vector y of dimension D. The factor model is then y = Λf + e (1) with the factors f of dimension k < D, the error term e, and the loadings matrix Λ. Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysis model (1) can be written as Cov(y) = ΛΛT + ψ (2) where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as the loadings matrix Λ are estimated from an estimation of Cov(y). Given observed clr transformed data Y as realizations of the random vector y. Outliers or deviations from the idealized model assumptions of factor analysis can severely effect the parameter estimation. As a way out, robust estimation of the covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), see Pison et al. (2003). Well known robust covariance estimators with good statistical properties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), rely on a full-rank data matrix Y which is not the case for clr transformed data (see, e.g., Aitchison, 1986). The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves this singularity problem. The data matrix Y is transformed to a matrix Z by using an orthonormal basis of lower dimension. Using the ilr transformed data, a robust covariance matrix C(Z) can be estimated. The result can be back-transformed to the clr space by C(Y ) = V C(Z)V T where the matrix V with orthonormal columns comes from the relation between the clr and the ilr transformation. Now the parameters in the model (2) can be estimated (Basilevsky, 1994) and the results have a direct interpretation since the links to the original variables are still preserved. The above procedure will be applied to data from geochemistry. Our special interest is on comparing the results with those of Reimann et al. (2002) for the Kola project data