983 resultados para PT-CO


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superabsorbent polymers (SAPs) based on acrylic acid (AA), sodium acrylate (SA), and acrylamide (AM) were synthesized by inverse suspension polymerization using ethylene glycol dimethacrylate as the crosslinking agent. The equilibrium swelling capacities and the rates of swelling of SAPs varied with the AM content and followed first-order kinetics. The photodegradation of SAPs in their equilibrium swollen state was carried out by monitoring their swelling capacity and the residual weight fraction. The SAPs degraded in two stages, wherein the swelling capacity increased to a maximum and then subsequently decreased. Thermogravimetric analysis of the SAPs indicated that the copolymeric superabsorbents had intermediate thermal stability between the homopolymeric superabsorbents. The activation energies of SAPs with 0, 20, and 100 mol % AM content were determined by Kissinger method and were found to be 299, 248, and 147 kJ mol-1, respectively. The ultrasonic degradation of the superabsorbents was carried out in their equilibrium swollen state, and the change in the viscosity with ultrasonication time was used to quantify the degradation. The ultrasonic degradation of AA/SA superabsorbent was also investigated at various ultrasound intensities. The degradation rate coefficients were found to increase with the intensity of ultrasound. The ultrasonic degradation of AA/SA/AM (20% AM) was also carried out, and degradation rate was found to be more than that of the AA/SA superabsorbent. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrothermal reaction of cobalt nitrate, 4,4'-oxybis(benzoic acid) (OBA), 1,2,4-triazole, and NaOH gave rise to a deep purple colored compound Co-4(triazolate)(2)(OBA)(3)], I, possessing Co-4 clusters. The Co-4 clusters are connected together through the tirazolate moieties forming a two-dimensional layer that closely resembles the TiS2 layer. The layers are pillared by the OBA units forming the three-dimensional structure. To the best of our knowledge, this is the first observation of a pillared TiS2 layer in a metal-organic framework compound. Magnetic studies in the temperature range 1.8-300 K indicate strong antiferromagetic interactions for Co-4 clusters. The structure as well as the magnetic behavior of the present compound has been compared with the previously reported related compound Co-2(mu 3-OH)(mu(2)-H2O)(pyrazine)(OBA)(OBAH)] prepared using pyrazine as the linker between the Co-4 clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new 2-oxo-1,2-dihydrobenzoh]quinoline-3-carbaldehyde N-substituted thiosemicarbazone ligands (H-2-LR, where R = H, Me, Et or Ph) and their corresponding new cobalt(III) complexes have been synthesized and characterized. The structures of the complexes 2 and 3 were determined by single crystal X-ray diffraction analysis. The interactions of the new complexes with DNA were investigated by absorption, emission and viscosity studies which indicated that the complexes bind to DNA via intercalation. Antioxidant studies of the new complexes showed that the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of complexes 1-4 against A549 cell line was assayed which showed higher cytotoxic activity with lower IC50 values indicating their efficiency in killing the cancer cells even at very low concentrations. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated nano-Schottky diodes of CdTe QDs with platinum metal electrodes in metal-semiconductor-metal planar configuration by drop-casting. The observed high value of ideality factor (13.3) of the diode was possibly due to the presence of defects in colloidal QDs. We observed asymmetry and non-linear nature of I-V characteristics between forward and reverse directions, which has been explained in terms of size distributions of quantum dots due to coffee ring effect. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3669408]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multicomponent crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2 : 1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N-H center dot center dot center dot N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We will give a tight minimum co-degree condition for a 4-uniform hypergraph to contain a perfect matching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800A degrees C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV-Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer's method and Williamson-Hall plots and are found to be in the ranges 40-60 nm and 30-80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at similar to 590, 612 and 625 nm, which are due to the transitions D-5(0)-> F-7(0), D-5(0)-> F-7(2) and D-5(0)-> F-7(3) of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s(2)-> 6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380A degrees C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Pt on the growth kinetics of the gamma'-Ni(Pt)](3)Al ordered intermetallic phase and the gamma- Ni(Pt, Al) solid solution diffusion rates of the species, hardness and elastic modulus was examined by employing the diffusion couple experimental technique. Experiments were conducted by using the beta-Ni(Pt)Al phase and Ni(Pt) alloy couples, each of which had a fixed amount of Pt (5, 10 and 15 at. %) in both the end members so that the Pt content is more or less constant throughout the interdiffusion zone. The results suggest that the growth kinetics of both phases and the average effective interdiffusion coefficients of Ni and Al increase with the increase in Pt content. Nanoindentation studies across the compositional gradients show that the mechanical properties of the intermetallic phase in the superalloy are relatively insensitive to the presence of Pt but are more sensitive to the Ni/Al ratio. In contrast, the marked variation in the hardness of the gamma phase were noted, increasing markedly with Al concentration in a given couple and also increasing with increasing Pt content. Possible causes for the observed variations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ion- (Ag, Co, Ni and Pd) doped titania nanocatalysts were successfully deposited on glass slides by layer-by-layer (LbL) self-assembly technique using a poly(styrene sulfonate sodium salt) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolyte system. Solid diffuse reflectance (SDR) studies showed a linear increase in absorbance at 416 nm with increase in the number of m-TiO2 thin films. The LbL assembled thin films were tested for their photocatalytic activity through the degradation of Rhodamine B under visible-light illumination. From the scanning electron microscope (SEM), the thin films had a porous morphology and the atomic force microscope (AFM) studies showed ``rough'' surfaces. The porous and rough surface morphology resulted in high surface areas hence the high photocatalytic degradation (up to 97% over a 6.5 h irradiation period) using visible-light observed. Increasing the number of multilayers deposited on the glass slides resulted in increased film thickness and an increased rate of photodegradation due to increase in the availability of more nanocatalysts (more sites for photodegradation). The LbL assembled thin films had strong adhesion properties which made them highly stable thus displaying the same efficiencies after five (5) reusability cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiferroic nanoparticles (NPs) of pristine and Ca, Ba co-doped BiFeO3 were synthesized by a facile sal gel route. Co-doping was done by fixing the total dopant concentration at 5 mol% and then the relative concentrations of Ca and Ba was varied. Structural, optical and magnetic properties of the NPs were investigated using different techniques. UV-Vis absorption spectra of BiFeO3 NPs showed a substantial blue shift of similar to 100 nm (530 nm -> 430 nm) on Ca. Ba co-doping which corresponds to increase in band gap by 0.5 eV. Fe-57 Mossbauer spectroscopy confirmed that iron is present only in 3(+) valence state in all co-doped samples. The coercive field increased by 18 times for Bi0.95Ca0.01Ba0.04FeO3 samples, which is the maximum enhancement, observed amongst all the 5 mol% doped samples. At the equimolar (2.5 mol % each) concentration of co-dopants, the coercive field shows a significant enhancement of about 9 times (220 Oe -> 2014 Oe) with concomitant increase in saturation magnetization by 7 times. Thus, equimolar co-doping causes simultaneous enhancement of the twin aspects of magnetic properties thereby making them better suited for device applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium-carbon (Ti-C) thin films of different compositions were prepared by a combination of pulsed DC (for Ti target) and normal DC (for graphite target) magnetron co-sputtering on oxidized silicon and fused quartz substrates. At 33.7 at.% of C content, pure hcp Ti transforms into fcc-TiC with a preferential orientation of (2 2 0) along with (1 1 1) and (2 0 0). A clear transformation in the preferential orientation from (2 2 0) to (1 1 1) has been observed when the C content was increased to 56 at.%. At 62.5 at.% of C, TiC precipitates in an amorphous carbon matrix whereas further increase in C leads to X-ray amorphous films. The cross-sectional scanning electron microscope images reveal that the films with low carbon content consists of columnar grains, whereas, randomly oriented grains are in an amorphous carbon matrix at higher carbon content. A dramatic variation was observed in the mechanical properties such as hardness, H, from 30 to 1 GPa and in modulus, E, from 255 to 25 GPa with varying carbon content in the films. Resistance to plastic deformation parameter was observed as 0.417 for films containing 62.5 at.% of C. Nanoscratch test reveals that the films are highly scratch resistant with a coefficient of friction ranging from 0.15 to 0.04. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a green method for the synthesis of ZnO-Au hybrids using an ultrafast microwave-based technique. This method provides good control over the nucleation of the metal nanoparticles on the oxide support, which governs the morphology and microstructure of the hybrids. The hybrids exhibit good catalytic activity for CO oxidation compared to similar hybrids reported in the literature. Detailed XPS investigation reveals the presence of Au-Zn and Au-O bonds at the interface. This surface doping leads to the formation of anionic and cationic Au sites that contribute to the enhanced activity. Our method is general and can be applied for designing other supported catalysts with controlled interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As Polymer Electrolyte Fuel Cells (PEFCs) are nearing the acceptable performance level for automotive and stationary applications, the focus on the research is shifting more and more toward enhancing their durability that still remains a major concern in their commercial acceptability. Hydrous ruthenium oxide (RuO2) is a promising material for pseudocapacitors due to its high stability, high specific-capacitance and rapid faradaic-reaction. Incorporation of carbon-supported RuO2 (RuO2/C) to platinum (Pt) is found to ameliorate both stability and catalytic activity of fuel cell cathodes that exhibit higher performance and durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance and cyclic voltammetry data. The degradation in performance of Pt-RuO2/C cathodes is found to be only similar to 8% after 10000 accelerated stress test (AST) cycles as against similar to 60% for Pt/C cathodes after 7000 AST cycles under similar conditions. These data are in conformity with the Electrochemical Surface Area and impedance results. Interestingly, Pt-RuO2/C cathodes can withstand more than 10000 AST cycles with only a nominal loss in their performance. Studies on catalytic electrodes with X-ray diffraction, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy reflect that incorporation of RuO2 to Pt helps mitigating aggregation of Pt particles and improves its stability during long-term operation of PEFCs. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.jes113440] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.