974 resultados para PSYCHROPHILIC BACTERIUM
Resumo:
The study aimed to evaluate the occurrence of pest and management of cotton genetically modified with the introduction of the bacterium Bacillus thunringiensis compared to conventional cotton in the 'Cerrado' region, installing the field experiment in 2007/2008 in Chapadão do Sul-MS. The experimental design was randomized blocks in a 2 × 3 factorial, with two managements of insecticides (with and without insecticides to control lepidopteran) and 3 modes of use of cultivars: 100% transgenic (NUOPAL), 100% non transgenic (Deltaopal) and interior area with transgenic (80% NUOPAL) with non-transgenic border (20% Deltaopal) with five replications. Evaluations were performed weekly of pest infestation, observing in 15 plants per plot the number of Alabama argillacea, Heliothis virescens and Spodoptera frugiperda. Based on these results it was concluded that: the occurrence of A. argillacea and H. virescens was lower in treated transgenic cultivar. There were no differences between transgenic and conventional farming on the occurrence of S. frugiperda.
Resumo:
In the majority of cases of bone fracture requiring surgery, orthopedic implants (screw-plate and screw) are used for osteosynthesis and the infections associated with such implants are due to the growth of microorganisms in biofilms. The objective of this study was to identify microorganisms recovered from osteosynthesis implants used to fix bone fractures, to assess the viability of the cells and the ability of staphylococci to adhere to a substrate and to determine their sensitivity/resistance to antimicrobials. After surgical removal, the metal parts of austenitic stainless steel (ASTM F138/F139 or ISO NBR 5832-1/9) were transported to the Laboratory of Clinical Microbiology, washed in buffer and subjected to ultrasonic bath at 40±2 kHz for 5 minutes. The sonicated fluid was used to seed solid culture media and cell viability was assessed under the microscope by with the aid of a fluorescent marker. The production of extracellular polysaccharide by Staphylococcus spp. was investigated by means of adhesion to a polystyrene plate. The profile of susceptibility to antimicrobials was determined by the disk diffusion assay. The most frequently isolated bacteria included coagulase-negative Staphylococcus resistant to erythromycin, clindamycin and oxacillin. Less frequent were Pseudomonas aeruginosa resistant to trimethoprim/sulfamethoxazole and ampicillin, Acinetobacter baumannii resistant to ceftazidime, Enterobacter cloacae resistant to cephalothin, cefoxitin, cefazolin, levofloxacin and ciprofloxacin, Bacillus spp. and Candida tropicalis. The observation of slides by fluorescence microscope showed clusters of living cells embedded in a transparent matrix. The test for adherence of coagulase-negative Staphylococcus to a polystyrene plate showed that these microorganisms produce extracellular polysaccharide. In conclusion, the metal parts were colonized by bacteria related to orthopedic implant infection, which were resistant to multiple antibiotics.
Resumo:
Feathers are rich in amino acids and can be employed as a dietary protein supplement for animal feed. Microbial degradation is an alternative technology for improving the nutritional value of feathers. Other potential applications of keratinase include use in the leather industry, detergents and medicine as well as the pharmaceutical for the treatment of acne, psoriasis and calluses. A new keratinolytic enzyme production bacterium was isolated from a poultry processing plant. To improve keratinase yield, statistically based experimental designs were applied to optimize three significant variables: temperature, substrate concentration (feathers) and agitation speed. Response surface methodology demonstrated an increase in keratinolytic activity at temperature, agitation speed and substrate concentration of 26.6°C, 150 rpm and 2%, respectively. Liquid chromatography revealed the release of amino acids in the Bacillus amyloliquefaciens culture broth, thereby demonstrating the potential of feather meal in the animal feed industry. © Global Science Publications.
Resumo:
Objectives: It was previously reported the clinical results of placing subgingival resin-modified glass ionomer restoration for treatment of gingival recession associated with non-carious cervical lesions. The aim of this study was to evaluate the influence of this treatment on the subgingival biofilm and gingival crevicular fluid (GCF) inflammatory markers. Materials and methods: Thirty-four patients presenting the combined defect were selected. The defects were treated with either connective tissue graft plus modified glass ionomer restoration (CTG+R) or with connective tissue graft only (CTG). Evaluation included bleeding on probing and probing depth, 5 different bacteria targets in the subgingival plaque assessed at baseline, 45, and 180 days post treatments, and 9 inflammatory mediators were also assessed in the GCF. Results: The levels of each target bacterium were similar during the entire period of evaluation (p > 0. 05), both within and between groups. The highest levels among the studied species were observed for the bacterium associated with periodontal health. Additionally, the levels of all cyto/chemokines analyzed were not statistically different between groups (p > 0. 05). Conclusion: Within the limits of the present study, it can be concluded that the presence of subgingival restoration may not interfere with the subgingival microflora and with GCF inflammatory markers analyzed. Clinical relevance: This approach usually leads to the placement of a subgingival restoration. There is a lack of information about the microbiological and immunological effects of this procedure. The results suggest that this combined approach may be considered as a treatment option for the lesion included in this study. © 2012 Springer-Verlag.
Resumo:
The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a seriousdisease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread ofX. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). Thetreatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a commontarget involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection. © 2013, American Society for Microbiology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated the influence of intensive farming of tilapia on physical and chemical parameters and on the occurrence of Streptococcus spp. in the water of the lake and of cages. Throughout a year, monthly samplings were taken in the rainy and dry seasons for a year, at two sampling sites, lake and net cages. For the determination of water quality, physical and chemical water parameters were evaluated and compared to the standards established by Conama Resolution no. 357/2005. The presence of Streptococcus spp. in the water was determined by plating on blood Agar and biochemical screening. Mean values of water parameters were tested using the Kruskal-Wallis test comparing sampling sites and seasons. Ammoniacal nitrogen (ammoniacal-N), total phosphorus (total-P) levels and occurrence of Streptococcus spp. have increased in the water of the net cages. The mean values of several parameters have decreased during the rainy period, except for pH, temperature and ammoniacal-N. Total-P and dissolved oxygen levels, during dry and rainy periods, respectively, exceeded the standard established for freshwater class 2, recommended for aquaculture, which can be harmful to the fish. Therefore, constant monitoring of the physical,chemical and microbiological water parameters is recommended since the Juara lake is also used for recreational purposes.
Resumo:
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. Hydrophilic bacterial cellulose fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. The microbial cellulose fiber has a high degree of crystallinity. Using direct nanomechanical measurement, determined that these fibers are very strong and when used in combination with other biocompatible materials, produce nanocomposites particularly suitable for use in human and veterinary medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. The chapter describes the fundamentals, purification and morphological investigation of bacterial cellulose. This chapter deals with the modification of microbial cellulose and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials. Furthermore, provides deep knowledge of fascinating current and future applications of bacterial cellulose and their nanocomposites especially in the medical field, materials with properties closely mimic that of biological organs and tissues were described. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
Objective: The recovery of mutans streptococci in saliva and dental biofilm samples depends, in part, on the culture medium used. In this study, we compared (i) the culture media Sucrose-Bacitracin agar (SB-20), Modified SB-20 (SB-20M) and Mitis Salivarius Bacitracin agar (MSB) in the count of colony forming units (cfu) of mutans streptococci and (ii) in the morphological and biochemical differentiation between Streptococcus mutans and Streptococcus sobrinus. Design: Samples of non-stimulated saliva from 20 children were plated on SB-20, SB-20M and MSB, and incubated in microaerophilia at 37 °C for 72 h. Identification of microorganisms was based on analysis of colony morphology under stereomicroscopy. The biochemical identification of colonies was done by biochemical tests using sugar fermentation, resistance to bacitracin and hydrogen peroxide production. Results: There was no significant difference (p > 0.05) in the number of cfu of mutans streptococci recovered on SB-20 and SB-20M agar. Comparing the media, SB-20 and SB-20M yielded a larger number of mutans streptococci colonies (p < 0.05) and were more effective than MSB in the identification of S. sobrinus (p < 0.05), but not of S. mutans (p > 0.05). Conclusion: There was no significant difference between SB-20 and SB-20M culture media in the count of mutans streptococci, demonstrating that the replacement of sucrose by coarse granular cane sugar did not alter the efficacy of the medium. Compared with MSB, SB-20 and SB-20M allowed counting a larger number of mutans streptococci colonies and a more effective morphological identification of S. sobrinus. © 2012 Elsevier Ltd.
Resumo:
The hyacinth macaw (Anodorhynchus hyacinthinus) is the largest species of psittacine birds. It is considered endangered and illegal trade is one of the main factors involved in its decline. In this study, 26 hyacinth macaws maintained under poor husbandry conditions and destined for the illegal trade were confiscated in São Paulo State, Brazil. These birds were evaluated for the presence of antibodies against Chlamydophila psittaci by complement fixation test and C. psittaci DNA by seminested polymerase chain reaction. Results showed that 65.4% of the macaws were positive for at least one test. Birds with subclinical infections can shed chlamydiae intermittently over long periods, contributing to the dissemination of the agent. Global trade is one of the most important drivers of disease emergence. The high percentage of positive samples in this study emphasizes the potential risk that the illegal trade of wild birds represents for both human and animal health. Copyright 2013 by American Association of Zoo Veterinarians.
Resumo:
An uncommon disseminated Mycobacterium tuberculosis infection is described in a 12-year-old female dog presenting with fever, dyspnea, cough, weight loss, lymphadenopathy, melena, epistaxis, and emesis. The dog had a history of close contact with its owner, who died of pulmonary tuberculosis. Radiographic examination revealed diffuse radio-opaque images in both lung lobes, diffuse visible masses in abdominal organs, and hilar and mesenteric lymphadenopathy. Bronchial washing samples and feces were negative for acid-fast organisms. Polymerase chain reaction (PCR)-based species identification of bronchial washing samples, feces, and urine revealed M. tuberculosis using PCR-restriction enzyme pattern analysis-PRA. Because of public health concerns, which were worsened by the physical condition of the dog, euthanasia of the animal was recommended. Rough and tough colonies suggestive of M. tuberculosis were observed after microbiological culture of lung, liver, spleen, heart, and lymph node fragments in Löwenstein-Jensen and Stonebrink media. The PRA analysis enabled diagnosis of M. tuberculosis strains isolated from organs. Copyright © 2013 by The American Society of Tropical Medicine and Hygiene.
Resumo:
Background: Rhodococcus equi is associated with pyogranulomatous infections, especially in foals, and this bacterium has also emerged as a pathogen for humans, particularly immunocompromised patients. R. equi infections in pigs, wild boar (Sus scrofa) and humans are mainly due to strains carrying the intermediate virulence (VapB) plasmid. In Brazil, R. equi carrying the VapB type 8 plasmid is the most common type recovered from humans co-infected with the human immunodeficiency virus (HIV). R. equi infection in pigs and wild boar is restricted predominantly to the lymphatic system, without any reports of pulmonary manifestations. Findings. This report describes the microbiological and histopathological findings, and molecular characterization of R. equi in two bronchopneumonia cases in wild boar using PCR and plasmid profile analysis by digestion with restriction endonucleases. The histological findings were suggestive of pyogranulomatous infection, and the plasmid profile of both R. equi isolates enabled the characterization of the strains as VapB type 8. Conclusions: This is the first report of bronchopneumonia in wild boar due to R. equi. The detection of the VapB type 8 plasmid in R. equi isolates emphasize that wild boar may be a potential source of pathogenic R. equi strains for humans. © 2013 de Vargas et al.; licensee BioMed Central Ltd.
Resumo:
This study describes the comparison of three methods for genotyping of Mycobacterium tuberculosis, namely MIRU-VNTR (mycobacterial interspersed repetitive units-variable number of tandem repeats), spoligotyping and, for the first time, MLST (Multilocus Sequence Typing). In order to evaluate the discriminatory power of these methods, a total of 44 M. tuberculosis isolates obtained from sputum specimens of patients from Brazil were genotyped. Among the three methods, MLST showed the lowest discriminatory power compared to the other two techniques. MIRU-VNTR showed better discriminatory power when compared to spoligotyping, however, the combination of both methods provides the greatest level of discrimination and therefore this combination is the most useful genotyping tool to be applied to M. tuberculosis isolates. © 2013 Elsevier B.V.
Resumo:
The peptide LYS-[TRP6]-Hy-A1 (Lys-a1) is a synthetic derivative of the peptide Hy-A1, initially isolated from the frog species Hypsiboas albopunctatus. According to previous research, it is a molecule with broad antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of the synthetic peptide Lys-a1 (KIFGAIWPLALGALKNLIK- NH2) on the planktonic and biofilm growth of oral bacteria. The methods used to evaluate antimicrobial activity include the following: determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in microtiter plates for growth in suspension and quantification of biomass by crystal violet staining and counting of colony forming units for biofilm growth. The microorganisms Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus were grown in Brain Heart Infusion broth at 37 °C under atmospheric pressure with 10% CO2. The peptide was solubilized in 0.1% acetic acid (v/v) at various concentrations (500-1.9 μg mL-1). Chlorhexidine gluconate 0.12% was used as the positive control, and BHI culture medium was used as the negative control. The tested peptide demonstrated a remarkable antimicrobial effect, inhibiting the planktonic and biofilm growth of all strains tested, even at low concentrations. Thus, the peptide Lys-a1 is an important source for potential antimicrobial agents, especially for the control and prevention of microbial biofilms, which is one of the most important factors in cariogenic processes. © 2012 Elsevier Inc.
Resumo:
Recent studies have shown that ingestion by the army worm Spodoptera frugiperda of Cry1Ac toxin from Bt cotton promotes histochemical and ultrastructural changes in the digestive cells of the predatory pentatomid bug Podisus nigrispinus. Therefore, mindful of the changes in the midgut of the predator, which represents the first line of defence in this insect, our aim was to test the hypothesis that the consumption of Bt cotton-fed S. frugiperda by P. nigrispinus might lead to alterations in components of the immune system of P. nigrispinus. The Cry1Ac toxin level in the leaves of Bt cotton, nitric oxide, phenoloxidase activity, and total proteins were quantified by ELISA. Total and differential hemocyte counts were evaluated, and hemocyte ultrastructure analysis was undertaken. We found that ingestion of the prey fed daily with approximately 23 ± 0.70 ng g-1 Cry1Ac by wet weight of leaves, and expressed by the Bt cotton, induces small ultrastructural changes in the predator's granulocytes and plasmatocytes. However, these changes did not affect the total number and differential and humoral variables analyzed for the bug's hemocytes. © 2013 Copyright Taylor and Francis Group, LLC.