930 resultados para PROINFLAMMATORY CYTOKINE EXPRESSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heparan sulfate proteoglycans (HSPGs) are complex and labile macromolecular moieties on the surfaces of cells that control the activities of a range of extracellular proteins, particularly those driving growth and regeneration. Here, we examine the biosynthesis of heparan sulfate (HS) sugars produced by cultured MC3T3-E1 mouse calvarial pre-osteoblast cells in order to explore the idea that changes in HS activity in turn drive phenotypic development during osteogenesis. Cells grown for 5 days under proliferating conditions were compared to cells grown for 20 days under mineralizing conditions with respect to their phenotype, the forms of HS core protein produced, and their HS sulfotransferase biosynthetic enzyme levels. RQ-PCR data was supported by the results from the purification of day 5 and day 20 HS forms by anionic exchange chromatography. The data show that cells in active growth phases produce more complex forms of sugar than cells that have become relatively quiescent during active mineralization, and that these in turn can differentially influence rates of cell growth when added exogenously back to preosteoblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we defined a new syndromic form of X-linked mental retardation in a 4-generation family with a unique clinical phenotype characterized by mild mental retardation, choreoathetosis, and abnormal behavior (MRXS10). Linkage analysis in this family revealed a candidate region of 13.4 Mb between markers DXS1201 and DXS991 on Xp11; therefore, mutation analysis was performed by direct sequencing in most of the 135 annotated genes located in the region. The gene (HADH2) encoding L-3-hydroxyacyl-CoA dehydrogenase II displayed a sequence alteration (c.574 C-->A; p.R192R) in all patients and carrier females that was absent in unaffected male family members and could not be found in 2,500 control X chromosomes, including in those of 500 healthy males. The silent C-->A substitution is located in exon 5 and was shown by western blot to reduce the amount of HADH2 protein by 60%-70% in the patient. Quantitative in vivo and in vitro expression studies revealed a ratio of splicing transcript amounts different from those normally seen in controls. Apparently, the reduced expression of the wild-type fragment, which results in the decreased protein expression, rather than the increased amount of aberrant splicing fragments of the HADH2 gene, is pathogenic. Our data therefore strongly suggest that reduced expression of the HADH2 protein causes MRXS10, a phenotype different from that caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, which is a neurodegenerative disorder caused by missense mutations in this multifunctional protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon overexpression of integrin αvβ3 and its engagement by vitronectin, we previously showed enhanced adhesion, proliferation, and motility of human ovarian cancer cells. By studying differential expression of genes possibly related to these tumor biological events, we identified the epidermal growth-factor receptor (EGF-R) to be under control of αvβ3 expression levels. Thus in the present study we characterized αvβ3-dependent changes of EGF-R and found significant upregulation of its expression and activity which was reflected by prominent changes of EGF-R promoter activity. Upon disruption of DNA-binding motifs for the transcription factors p53, ETF, the repressor ETR, p50, and c-rel, respectively, we sought to identify DNA elements contributing to αvβ3-mediated EGF-R promoter induction. Both, the p53- and ETF-mutant, while exhibiting considerably lower EGF-R promoter activity than the wild type promoter, retained inducibility by αvβ3. Mutation of the repressor motif ETR, as expected, enhanced EGF-R promoter activity with a further moderate increase upon αvβ3 elevation. The p50-mutant displayed EGF-R promoter activity almost comparable to that of the wild type promoter with no impairment of induction by αvβ3. However, the activity of an EGF-R promoter mutant displaying a disrupted c-rel-binding motif did not only prominently decline, but, moreover, was not longer responsive to enhanced αvβ3, involving this DNA element in αvβ3-dependent EGF-R upregulation. Moreover, αvβ3 did not only increase the EGF-R but, moreover, also led to obvious co-clustering on the cancer cell surface. By studying αvβ3/EGF-R-effects on the focal adhesion kinase (FAK) and the mitogen activated protein kinases (MAPK) p44/42 (erk−1/erk−2), having important functions in synergistic crosstalk between integrins and growth-factor receptors, we found for both significant enhancement of expression and activity upon αvβ3/VN interaction and cell stimulation by EGF. Upregulation of the EGF-R by integrin αvβ3, both receptor molecules with a well-defined role as targets for cancer treatment, might represent an additional mechanism to adapt synergistic receptor signaling and crosstalk in response to an altered tumor cell microenvironment during ovarian cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapidly developing proteomic tools are improving detection of deregulated kallikrein-related peptidase (KLK) expression, at the protein level, in prostate and ovarian cancer, as well as facilitating the determination of functional consequences downstream. Mass spectrometry (MS)-driven proteomics uniquely allows for the detection, identification and quantification of thousands of proteins in a complex protein pool, and this has served to identify certain KLKs as biomarkers for these diseases. In this review we describe applications of this technology in KLK biomarker discovery, and elucidate MS-based techniques which have been used for unbiased, global screening of KLK substrates within complex protein pools. Although MS-based KLK degradomic studies are limited to date, they helped to discover an array of novel KLK substrates. Substrates identified by MS-based degradomics are reported with improved confidence over those determined by incubating a purified or recombinant substrate and protease of interest, in vitro. We propose that these novel proteomic approaches represent the way forward for KLK research, in order to correlate proteolysis of biological substrates with tissue-related consequences, toward clinical targeting of KLK expression and function for cancer diagnosis, prognosis and therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghrelin is a peptide hormone produced in the stomach and a range of other tissues, where it has endocrine, paracrine and autocrine roles in both normal and disease states. Ghrelin has been shown to be an important growth factor for a number of tumours, including prostate and breast cancers. In this study, we examined the expression of the ghrelin axis (ghrelin and its receptor, the growth hormone secretagogue receptor, GHSR) in endometrial cancer. Ghrelin is expressed in a range of endometrial cancer tissues, while its cognate receptor, GHSR1a, is expressed in a small subset of normal and cancer tissues. Low to moderately invasive endometrial cancer cell lines were examined by RT-PCR and immunoblotting, demonstrating that ghrelin axis mRNA and protein expression correlate with differentiation status of Ishikawa, HEC1B and KLE endometrial cancer cell lines. Moreover, treatment with ghrelin potently stimulated cell proliferation and inhibited cell death. Taken together, these data indicate that ghrelin promotes the progression of endometrial cancer cells in vitro, and may contribute to endometrial cancer pathogenesis and represent a novel treatment target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two native copper-containing amine oxidases (EC 1.4.3.21) have been isolated from Rhodococcus opacus and reveal phenotypic plasticity and catalytic activity with respect to structurally diverse natural and synthetic amines. Altering the amine growth substrate has enabled tailored and targeted oxidase upreg-ulation, which with subsequent treatment by precipitation, ion exchange and gel filtration, achieved a 90–150 fold purification. MALDI-TOF mass spectrometric and genomic analysis has indicated multiple gene activation with complex biodegradation pathways and regulatory mechanisms. Additional post-purification characterisation has drawn on the use of carbonyl reagent and chelating agent inhibitors. Michaelis–Menten kinetics for common aliphatic and aromatic amine substrates and several structural analogues demonstrated a broad specificity and high affinity with Michaelis constants (K M) ranging from 0.1 to 0.9 mM for C 1 –C 5 aliphatic mono-amines and <0.2 mM for a range of aromatic amines. Potential exploitation of the enzymatic versatility of the two isolated oxidases in biosensing and bioprocessing is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC 1.4.3.10) within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC 1.4.3.22) was observed at diamine concentrations>1mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis-Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM)=190μM and maximum rate (kcat)=21.8s(-1) for the oxidative deamination of putrescine with a lower KM (=60μM) and comparable kcat (=18.2s(-1)) for the copper oxidase. MALDI-TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-Amino acid oxidases (LAAOs) are useful catalysts for the deracemisation of racemic amino acid sub-strates when combined with abiotic reductants. The gene nadB encoding the L-aspartate amino acid oxidase from Pseudomonas putida (PpLASPO) has been cloned and expressed in E. coli. The purified PpLASPO enzyme displayed a K M for l-aspartic acid of 2.26 mM and a k cat = 10.6 s −1 , with lower activity also displayed towards L-asparagine, for which pronounced substrate inhibition was also observed. The pH optimum of the enzyme was recorded at pH 7.4. The enzyme was stable for 60 min at up to 40 • C, but rapid losses in activity were observed at 50 • C. A mutational analysis of the enzyme, based on its sequence homology with the LASPO from E. coli of known structure, appeared to confirm roles in substrate binding or catalysis for residues His244, His351, Arg386 and Arg290 and also for Thr259 and Gln242. The high activity of the enzyme, and its promiscuous acceptance of both L-asparagine and L-glutamate as substrates, if with low activity, suggests that PpLASPO may provide a good model enzyme for evolution studies towards AAOs of altered or improved properties in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of oxygen availability and induction culture biomass upon production of an industrially important monoamine oxidase (MAO) were investigated in fed-batch cultures of a recombinant E. coli. For each induction cell biomass 2 different oxygenation methods were used, aeration and oxygen enriched air. Induction at higher biomass levels increased the culture demand for oxygen, leading to fermentative metabolism and accumulation of high levels of acetate in the aerated cultures. Paradoxically, despite an almost eight fold increase in acetate accumulation to levels widely reported to be highly detrimental to protein production, when induction wet cell weight (WCW) rose from 100% to 137.5%, MAO specific activity in these aerated processes showed a 3 fold increase. By contrast, for oxygenated cultures induced at WCW's 100% and 137.5% specific activity levels were broadly similar, but fell rapidly after the maxima were reached. Induction at high biomass levels (WCW 175%) led to very low levels of specific MAO activity relative to induction at lower WCW's in both aerated and oxygenated cultures. Oxygen enrichment of these cultures was a useful strategy for boosting specific growth rates, but did not have positive effects upon specific enzyme activity. Based upon our findings, consideration of the amino acid composition of MAO and previous studies on related enzymes, we propose that this effect is due to oxidative damage to the MAO enzyme itself during these highly aerobic processes. Thus, the optimal process for MAO production is aerated, not oxygenated, and induced at moderate cell density, and clearly represents a compromise between oxygen supply effects on specific growth rate/induction cell density, acetate accumulation, and high specific MAO activity. This work shows that the negative effects of oxygen previously reported in free enzyme preparations, are not limited to these acellular environments but are also discernible in the sheltered environment of the cytosol of E. coli cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia infections are associated with exacerbations of asthma however the mechanisms are poorly understood. In this thesis we infected dendritic cells from healthy controls and asthmatic patients to determine if the immune response to chlamydial infection by these key immune cells could explain this association of chlamydial infection with asthma attacks. Infected dendritic cells from asthmatic patients showed increased expression of multiple inflammatory cytokine genes and genes for several tissue remodelling proteins, suggesting that infected dendritic cells play a central role in driving the airways damage associated with asthma. The findings provide a greater understanding of the role of infections in asthma and may provide a basis for new therapies to treat this important disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PTH-stimulated intracellular signaling is regulated by the cytoplasmic adaptor molecule barrestin. We reported that the response of cancellous bone to intermittent PTH is reduced in b-arrestin22/2 mice and suggested that b-arrestins could influence the bone mineral balance by controlling RANKL and osteoprotegerin (OPG) gene expression. Here, we study the role of b-arrestin2 on the in vitro development and activity of bone marrow (BM) osteoclasts (OCs) and Ephrins ligand (Efn), and receptor (Eph) mRNA levels in bone in response to PTH and the changes of bone microarchitecture in wildtype (WT) and barrestin2 2/2 mice in models of bone remodeling: a low calcium diet (LoCa) and ovariectomy (OVX). The number of PTH-stimulated OCs was higher in BM cultures from b-arrestin22/2 compared with WT, because of a higher RANKL/OPG mRNA and protein ratio, without directly influencing osteoclast activity. In vivo, high PTH levels induced by LoCa led to greater changes in TRACP5b levels in b-arrestin22/2 compared with WT. LoCa caused a loss of BMD and bone microarchitecture, which was most prominent in b-arrestin22/2. PTH downregulated Efn and Eph genes in b-arrestin22/2, but not WT. After OVX, vertebral trabecular bone volume fraction and trabecular number were lower in b-arrestin22/2 compared with WT. Histomorphometry showed that OC number was higher in OVX-b-arrestin22/2 compared with WT. These results indicate that b-arrestin2 inhibits osteoclastogenesis in vitro, which resulted in decreased bone resorption in vivo by regulating RANKL/OPG production and ephrins mRNAs. As such, b-arrestins should be considered an important mechanism for the control of bone remodeling in response to PTH and estrogen deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust facial expression recognition (FER) under occluded face conditions is challenging. It requires robust algorithms of feature extraction and investigations into the effects of different types of occlusion on the recognition performance to gain insight. Previous FER studies in this area have been limited. They have spanned recovery strategies for loss of local texture information and testing limited to only a few types of occlusion and predominantly a matched train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to extract a set of Gabor based part-face templates from gallery images and converts these templates into template match distance features. The resulting feature vectors are robust to occlusion because occluded parts are covered by some but not all of the random templates. The method is evaluated using facial images with occluded regions around the eyes and the mouth, randomly placed occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects of such occlusion. Overall recognition performance and the performance for each facial expression are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the high robustness and fast processing speed of our approach, and provide useful insight into the effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of robustness of the approach to changes in the orientation and scale of Gabor filters, the size of templates, and occlusions ratios. Performance comparisons with previous approaches show that the proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of eyes or mouth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.