948 resultados para PROCESSING TECHNIQUE
Resumo:
An error-free computational approach is employed for finding the integer solution to a system of linear equations, using finite-field arithmetic. This approach is also extended to find the optimum solution for linear inequalities such as those arising in interval linear programming probloms.
Application of Laplace transform technique to the solution of certain third-order non-linear systems
Resumo:
A number of papers have appeared on the application of operational methods and in particular the Laplace transform to problems concerning non-linear systems of one kind or other. This, however, has met with only partial success in solving a class of non-linear problems as each approach has some limitations and drawbacks. In this study the approach of Baycura has been extended to certain third-order non-linear systems subjected to non-periodic excitations, as this approximate method combines the advantages of engineering accuracy with ease of application to such problems. Under non-periodic excitations the method provides a procedure for estimating quickly the maximum response amplitude, which is important from the point of view of a designer. Limitations of such a procedure are brought out and the method is illustrated by an example taken from a physical situation.
Resumo:
A new method for decomposition of compo,.~itsei gnals is presented. It is shown that high freyuency portion of composite signal spectrum possesses information on echo structure. The proposed technique does not assume the shape of basic wavelet and does not place any restrictions on the amplitudes and arrival times of echoes inm the composite signal. In the absence of noise any desirrd resolution can he obtained The effect of sampling rate and jFequency window function on echo resolutio.~ are di.wussed. Voiced speech segment is considered as an example of conzpxite sigrnl to demonstrate the application of the decomposition technique.
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.
Resumo:
Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.
Resumo:
Replication and transcription of the RNA genome of alphaviruses relies on a set of virus-encoded nonstructural proteins. They are synthesized as a long polyprotein precursor, P1234, which is cleaved at three processing sites to yield nonstructural proteins nsP1, nsP2, nsP3 and nsP4. All the four proteins function as constitutive components of the membrane-associated viral replicase. Proteolytic processing of P1234 polyprotein is precisely orchestrated and coordinates the replicase assembly and maturation. The specificity of the replicase is also controlled by proteolytic cleavages. The early replicase is composed of P123 polyprotein intermediate and nsP4. It copies the positive sense RNA genome to complementary minus-strand. Production of new plus-strands requires complete processing of the replicase. The papain-like protease residing in nsP2 is responsible for all three cleavages in P1234. This study addressed the mechanisms of proteolytic processing of the replicase polyprotein in two alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) representing different branches of the genus. The survey highlighted the functional relation of the alphavirus nsP2 protease to the papain-like enzymes. A new structural motif the Cys-His catalytic dyad accompanied with an aromatic residue following the catalytic His was described for nsP2 and a subset of other thiol proteases. Such an architecture of the catalytic center was named the glycine specificity motif since it was implicated in recognition of a specific Gly residue in the substrate. In particular, the presence of the motif in nsP2 makes the appearance of this amino acid at the second position upstream of the scissile bond a necessary condition for the cleavage. On top of that, there were four distinct mechanisms identified, which provide affinity for the protease and specifically direct the enzyme to different sites in the P1234 polyprotein. Three factors RNA, the central domain of nsP3 and the N-terminus of nsP2 were demonstrated to be external modulators of the nsP2 protease. Here I suggest that the basal nsP2 protease specificity is inherited from the ancestral papain-like enzyme and employs the recognition of the upstream amino acid signature in the immediate vicinity of the scissile bond. This mechanism is responsible for the efficient processing of the SFV nsP3/nsP4 junction. I propose that the same mechanism is involved in the cleavage of the nsP1/nsP2 junction of both viruses as well. However, in this case it rather serves to position the substrate, whereas the efficiency of the processing is ensured by the capability of nsP2 to cut its own N-terminus in cis. Both types of cleavages are demonstrated here to be inhibited by RNA, which is interpreted as impairing the basal papain-like recognition of the substrate. In contrast, processing of the SIN nsP3/nsP4 junction was found to be activated by RNA and additionally potentiated by the presence of the central region of nsP3 in the protease. The processing of the nsP2/nsP3 junction in both viruses occurred via another mechanism, requiring the exactly processed N-terminus of nsP2 in the protease and insensitive to RNA addition. Therefore, the three processing events in the replicase polyprotein maturation are performed via three distinct mechanisms in each of two studied alphaviruses. Distinct sets of conditions required for each cleavage ensure sequential maturation of P1234 polyprotein: nsP4 is released first, then the nsP1/nsP2 site is cut in cis, and liberation of the nsP2 N-terminus activates the cleavage of the nsP2/nsP3 junction at last. The first processing event occurs differently in SFV and SIN, whereas the subsequent cleavages are found to be similar in the two viruses and therefore, their mechanisms are suggested to be conserved in the genus. The RNA modulation of the alphavirus nonstructural protease activity, discovered here, implies bidirectional functional interplay between the alphavirus RNA metabolism and protease regulation. The nsP2 protease emerges as a signal transmitting moiety, which senses the replication stage and responds with proteolytic cleavages. A detailed hypothetical model of the alphavirus replicase core was inferred from the data obtained in the study. Similar principles in replicase organization and protease functioning are expected to be employed by other RNA viruses.
Resumo:
This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.
Resumo:
The estimation of the frequency of a sinusoidal signal is a well researched problem. In this work we propose an initialization scheme to the popular dichotomous search of the periodogram peak algorithm(DSPA) that is used to estimate the frequency of a sinusoid in white gaussian noise. Our initialization is computationally low cost and gives the same performance as the DSPA, while reducing the number of iterations needed for the fine search stage. We show that our algorithm remains stable as we reduce the number of iterations in the fine search stage. We also compare the performance of our modification to a previous modification of the DSPA and show that we enhance the performance of the algorithm with our initialization technique.
Resumo:
The rapid increase in the number of text documents available on the Internet has created pressure to use effective cleaning techniques. Cleaning techniques are needed for converting these documents to structured documents. Text cleaning techniques are one of the key mechanisms in typical text mining application frameworks. In this paper, we explore the role of text cleaning in the 20 newsgroups dataset, and report on experimental results.
Resumo:
Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Processing of Sesbania mosaic virus (SeMV) polyprotein 2a and 2ab was reanalyzed in the view of the new genome organization of sobemoviruses. Polyprotein 2a when expressed in E coli, from the new cDNA clone, got cleaved at the earlier identified sites E325-T326, E402-T403 and E498-S499 to release protease, VPg, P10 and P8, respectively. Additionally, a novel cleavage was identified within the protease domain at position E132-S133, which was found to be essential for efficient polyprotein processing. Products, corresponding to cleavages identified in E. coli, were also detected in infected Sesbania leaves. Interestingly, though the sites are exactly the same in polyprotein 2ab, it got cleaved between Protease-VPg but not between VPg-RdRp. This indicates to a differential cleavage preference, governed probably by the conformation of 2ab. Also, the studies revealed that, in SeMV, processing is regulated by mode of cleavage and context of the cleavage site.