983 resultados para PRECIPITATION (Meteorology)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric trace element concentrations were measured from March 1999 through December 2003 at the Air Chemistry Observatory of the German Antarctic station Neumayer by inductively coupled plasma - quadrupol mass spectrometry (ICP-QMS) and ion chromatogra-phy (IC). This continuous five year long record derived from weekly aerosol sampling re-vealed a distinct seasonal summer maximum for elements linked with mineral dust entry (Al, La, Ce, Nd) and a winter maximum for the mostly sea salt derived elements Li, Na, K, Mg, Ca, and Sr. The relative seasonal amplitude was around 1.7 and 1.4 for mineral dust (La) and sea salt aerosol (Na), respectively. On average a significant deviation regarding mean ocean water composition was apparent for Li, Mg, and Sr which could hardly be explained by mir-abilite precipitation on freshly formed sea ice. In addition we observed all over the year a not clarified high variability of element ratios Li/Na, K/Na, Mg/Na, Ca/Na, and Sr/Na. We found an intriguing co-variation of Se concentrations with biogenic sulfur aerosols (methane sul-fonate and non-sea salt sulfate), indicating a dominant marine biogenic source for this element linked with the marine biogenic sulfur source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the validity of d18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (d18Oprecip) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and d18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and d18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in d18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the d18Oprecip distribution among the simulations.