922 resultados para PORTUGUESE SIGN LANGUAGE
Resumo:
Este estudo objetiva analisar os enunciados que avaliam a proficiência em leitura em provas de Língua Portuguesa, no sentido de buscar compreender o que os professores intencionam avaliar quando elaboram os enunciados das questões que avaliam a leitura e de entender como se dá a progressão ao longo do ano e das séries do Ensino Fundamental II. O corpus foi constituído por dezesseis provas, quatro de cada série do segundo segmento do Ensino Fundamental, aplicadas uma em cada bimestre, em um colégio da rede privada da cidade do Rio de Janeiro, ao longo do ano de 2013. Para proceder à análise, tomou-se como referência a tipologia de compreensão de livros didáticos de Marcuschi (2008), os Objetos de Conhecimento da Prova Brasil (2008) e uma concepção de língua e leitura sociointeracionista. A pesquisa evidencia que os objetos do conhecimento distribuem-se ao longo dos bimestres de cada série e ao longo do segmento, irregularmente e aponta indícios de que não existem critérios pré-determinados. Contribui, assim, para proporcionar uma reflexão sobre a necessidade de um currículo de leitura que defina itens explorados e avaliados conscientemente pelos professores.
Resumo:
This paper investigates a method of automatic pronunciation scoring for use in computer-assisted language learning (CALL) systems. The method utilizes a likelihood-based `Goodness of Pronunciation' (GOP) measure which is extended to include individual thresholds for each phone based on both averaged native confidence scores and on rejection statistics provided by human judges. Further improvements are obtained by incorporating models of the subject's native language and by augmenting the recognition networks to include expected pronunciation errors. The various GOP measures are assessed using a specially recorded database of non-native speakers which has been annotated to mark phone-level pronunciation errors. Since pronunciation assessment is highly subjective, a set of four performance measures has been designed, each of them measuring different aspects of how well computer-derived phone-level scores agree with human scores. These performance measures are used to cross-validate the reference annotations and to assess the basic GOP algorithm and its refinements. The experimental results suggest that a likelihood-based pronunciation scoring metric can achieve usable performance, especially after applying the various enhancements.
Resumo:
Recent research into the acquisition of spoken language has stressed the importance of learning through embodied linguistic interaction with caregivers rather than through passive observation. However the necessity of interaction makes experimental work into the simulation of infant speech acquisition difficult because of the technical complexity of building real-time embodied systems. In this paper we present KLAIR: a software toolkit for building simulations of spoken language acquisition through interactions with a virtual infant. The main part of KLAIR is a sensori-motor server that supplies a client machine learning application with a virtual infant on screen that can see, hear and speak. By encapsulating the real-time complexities of audio and video processing within a server that will run on a modern PC, we hope that KLAIR will encourage and facilitate more experimental research into spoken language acquisition through interaction. Copyright © 2009 ISCA.
Resumo:
A type of adaptive, closed-loop controllers known as self-tuning regulators present a robust method of eliminating thermoacoustic oscillations in modern gas turbines. These controllers are able to adapt to changes in operating conditions, and require very little pre-characterisation of the system. One piece of information that is required, however, is the sign of the system's high frequency gain (or its 'instantaneous gain'). This poses a problem: combustion systems are infinite-dimensional, and so this information is never known a priori. A possible solution is to use a Nussbaum gain, which guarantees closed-loop stability without knowledge of the sign of the high frequency gain. Despite the theory for such a controller having been developed in the 1980s, it has never, to the authors' knowledge, been demonstrated experimentally. In this paper, a Nussbaum gain is used to stabilise thermoacoustic instability in a Rijke tube. The sign of the high frequency gain of the system is not required, and the controller is robust to large changes in operating conditions - demonstrated by varying the length of the Rijke tube with time. Copyright © 2008 by Simon J. Illingworth & Aimee S. Morgans.
Resumo:
This paper investigates several approaches to bootstrapping a new spoken language understanding (SLU) component in a target language given a large dataset of semantically-annotated utterances in some other source language. The aim is to reduce the cost associated with porting a spoken dialogue system from one language to another by minimising the amount of data required in the target language. Since word-level semantic annotations are costly, Semantic Tuple Classifiers (STCs) are used in conjunction with statistical machine translation models both of which are trained from unaligned data to further reduce development time. The paper presents experiments in which a French SLU component in the tourist information domain is bootstrapped from English data. Results show that training STCs on automatically translated data produced the best performance for predicting the utterance's dialogue act type, however individual slot/value pairs are best predicted by training STCs on the source language and using them to decode translated utterances. © 2010 ISCA.