923 resultados para PHYSICAL RADIATION EFFECTS
Resumo:
Analytical expressions which include depletion layer effects on low-injection carrier relaxation are being presented for the first time here. Starting from the continuity equation for the minority carriers, we derive expressions for the output signal pertinent to time-resolved microwave and luminescence experiments. These are valid for the time domain that usually overlaps with the time scales of surface processes, such as charge transfer and trapping. Apart from the usual pulse form of illumination, theoretical expressions pertaining to other forms of illumination such as switch-on and switch-off transient modes, a periodic mode, and a steady state and their various inter-relationships are derived here. The expressions obtained are seen to be generalizations of existing flat-band low-injection results in the Limit of early or initial band bendings. The importance of the depletion layer as an experimental parameter is clearly seen in the limit of larger band bendings wherein it is shown, unlike the flat-band case, to exhibit pure exponential forms of carrier relaxation. Our results are consistent with the main conclusions of the numerical and experimental work published recently. Furthermore, this work provides the actual functional relationships between the applied potential and observed carrier decay. This should enable one to extract the surface kinetic parameters, after deciding on the dominant mode of carrier relaxation at the interface, whether charge transfer or trapping, by studying the potential dependence of the fate of relaxation.
Resumo:
The symmetrized density-matrix renormalization-group approach is applied within the extended Hubbard-Peierls model (with parameters U/t, V/t, and bond alternation delta) to study the ordering of the lowest one-photon (1(1)B(u)(-)) and two-photon (2(1)A(g)(+)) states in one-dimensional conjugated systems with chain lengths N up to N = 80 sites. Three different types of crossovers are studied, as a function of U/t, delta, and N. The ''U crossover'' emphasizes the larger ionic character of the 2A(g) state compared to the lowest triplet excitation. The ''delta crossover'' shows strong dependence on both N and U/t. the ''N crossover'' illustrates the more localized nature of the 2A(g) excitation relative to the 1B(u) excitation at intermediate correlation strengths.
Resumo:
We study muon-spin rotation (mu SR) spectra in the mixed phase of highly anisotropic layered superconductors, specifically Bi2+xSr2-xCaCu2O8+delta (BSCCO), by modeling the fluid and solid phases of pancake Vortices using liquid-state and density functional methods. The role of thermal fluctuations in causing motional narrowing of mu SR line shapes is quantified in terms of a first-principles theory of the flux-lattice melting transition. The effects of random point pinning are investigated using a replica treatment of liquid-state correlations and a replicated density functional theory. Our results indicate that motional narrowing in the pure system, although substantial, cannot account for the remarkably small linewidths obtained experimentally at relatively high fields and low temperatures. We find that satisfactory agreement with the mu SR data for BSCCO in this regime can be obtained through the ansatz that this ''phase'' is characterized by frozen short-range positional correlations reflecting the structure of the liquid just above the melting transition. This proposal is consistent with recent suggestions of a ''pinned liquid'' or ''glassy'' state of pancake Vortices in the presence of pinning disorder. Our results for the high-temperature liquid phase indicate that measurable linewidths may be obtained in this phase as a consequence of density inhomogeneities induced by the pinning disorder. The results presented here comprise a unified, first-principles theoretical treatment of mu SR spectra in highly anisotropic layered superconductors in terms of a controlled set of approximations. [S0163-1829(99)08033-9].
Resumo:
Although the prevalent mathematical description of the Poynting-Robertson effect is correct, its physical interpretation is sometimes problematic. By means of a two-parameter model, we revisit the effect in order to get a better physical understanding of it. The principal conclusion is that the motion of a dust in circumsolar orbit is governed only by solar radiation absorption and not by the asymmetry of reemission, even when viewed in the rest-frame of the Sun. (C) 1999 Academic Press.
Resumo:
Role of swift heavy ion irradiation on the modification of transport and structural properties of high temperature superconductors is studied. Good quality YBCO thin films prepared by high pressure oxygen sputtering and laser ablation were used in this investigation. Resistivity and atomic force microscopy (AFM) were mainly used to probe superconducting and microstructural modifications resulted from the irradiation of high energy and heavy ions like 100 MeV oxygen and 200 MeV silver. Radiation induced sputtering or erosion is likely to be a major disastrous component of such high energy irradiation that could be powerful in masking phase coherence effects, atleast in grain boundaries. The extent of damage/nature of defects other than columnar defects produced by swift heavy ions is discussed in the light of AFM measurements. The effect of high energy oxygen ion irradiation is anomalous. A clear annealing effect at higher doses is seen. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the electronic structure of ordered and disordered Sr2FeMoO6 using ab initio bandstructure methods. The effect of disorder was simulated within supercell calculations to realize several configurations with mis-site disorders. It is found that such disorder effects destroy the half-metallic ferromagnetic state of the ordered compound. It also leads to a substantial reduction of the magnetic moments at the Fe sites in the disordered configurations. Most interestingly, it is found for the disordered configurations that the magnetic coupling within the Fe sublattice as well as that within the Mo sublattice always remain ferromagnetic, while the two sublattices couple antiferromagnetically, in close analogy to the magnetic structure of the ordered compound, but,in contrast to recent suggestions.
Resumo:
We analyze the dynamics of desorption of a polymer molecule which is pulled at one of its ends with force f, trying to desorb it. We assume a monomer to desorb when the pulling force on it exceeds a critical value f(c). We formulate an equation for the average position of the n-th monomer, which takes into account excluded-volume interaction through the blob-picture of a polymer under external constraints. The approach leads to a diffusion equation with a p-Laplacian for the propagation of the stretching along the chain. This has to be solved subject to a moving boundary condition. Interestingly, within this approach, the problem can be solved exactly in the trumpet, stem-flower and stem regimes. In the trumpet regime, we get tau = tau(0)n(d)(2), where n(d) is the number of monomers that have desorbed at the time tau. tau(0) is known only numerically, but for f close to f(c), it is found to be tau(0) similar to f(c)/(f(2/3) - f(c)(2/3)) If one used simple Rouse dynamics, this result would change to tau similar to f(c)n(d)(2)/(f - f(c)). In the other regimes too, one can find exact solution, and interestingly, in all regimes tau similar to n(d)(2). Copyright (C) EPLA, 2011
Resumo:
This article is concerned with a study of an unusual effect due to density of biomass pellets in modern stoves based on close-coupled gasification-combustion process. The two processes, namely, flaming with volatiles and glowing of the char show different effects. The mass flux of the fuel bears a constant ratio with the air flow rate of gasification during the flaming process and is independent of particle density; char glowing process shows a distinct effect of density. The bed temperatures also have similar features: during flaming, they are identical, but distinct in the char burn (gasification) regime. For the cases, wood char and pellet char, the densities are 350, 990 kg/m(3), and the burn rates are 2.5 and 3.5 g/min with the bed temperatures being 1380 and 1502 K, respectively. A number of experiments on practical stoves showed wood char combustion rates of 2.5 +/- 0.5 g/min and pellet char burn rates of 3.5 +/- 0.5 g/min. In pursuit of the resolution of the differences, experimental data on single particle combustion for forced convection and ambient temperatures effects have been obtained. Single particle char combustion rate with air show a near-d(2) law and surface and core temperatures are identical for both wood and pellet char. A model based on diffusion controlled heat release-radiation-convection balance is set up. Explanation of the observed results needs to include the ash build-up over the char. This model is then used to explain observed behavior in the packed bed; the different packing densities of the biomass chars leading to different heat release rates per unit bed volume are deduced as the cause of the differences in burn rate and bed temperatures.
Resumo:
An exact classical theory of the motion of a point dipole in a meson field is given which takes into account the effects of the reaction of the emitted meson field. The meson field is characterized by a constant $\chi =\mu /\hslash $ of the dimensions of a reciprocal length, $\mu $ being the meson mass, and as $\chi \rightarrow $ 0 the theory of this paper goes over continuously into the theory of the preceding paper for the motion of a spinning particle in a Maxwell field. The mass of the particle and the spin angular momentum are arbitrary mechanical constants. The field contributes a small finite addition to the mass, and a negative moment of inertia about an axis perpendicular to the spin axis. A cross-section (formula (88 a)) is given for the scattering of transversely polarized neutral mesons by the rotation of the spin of the neutron or proton which should be valid up to energies of 10$^{9}$ eV. For low energies E it agrees completely with the old quantum cross-section, having a dependence on energy proportional to p$^{4}$/E$^{2}$ (p being the meson momentum). At higher energies it deviates completely from the quantum cross-section, which it supersedes by taking into account the effects of radiation reaction on the rotation of the spin. The cross-section is a maximum at E $\sim $ 3$\cdot $5$\mu $, its value at this point being 3 $\times $ 10$^{-26}$ cm.$^{2}$, after which it decreases rapidly, becoming proportional to E$^{-2}$ at high energies. Thus the quantum theory of the interaction of neutrons with mesons goes wrong for E $\gtrsim $ 3$\mu $. The scattering of longitudinally polarized mesons is due to the translational but not the rotational motion of the dipole and is at least twenty thousand times smaller. With the assumption previously made by the present author that the heavy partilesc may exist in states of any integral charge, and in particular that protons of charge 2e and - e may occur in nature, the above results can be applied to charged mesons. Thus transversely polarised mesons should undergo a very big scattering and consequent absorption at energies near 3$\cdot $5$\mu $. Hence the energy spectrum of transversely polarized mesons should fall off rapidly for energies below about 3$\mu $. Scattering plays a relatively unimportant part in the absorption of longitudinally polarized mesons, and they are therefore much more penetrating. The theory does not lead to Heisenberg explosions and multiple processes.
Resumo:
Systematic observations of light detection and ranging (LIDAR) to detect elevated aerosol layer were carried out at Manora Peak (29.4 degrees N, 79.5 degrees E, similar to 1960 m a.s.l), Nainital, in the Central Himalayas during January-May 2008. In spite of being a remote, high-altitude site, an elevated aerosol layer is observed quite frequently in the altitude range of 2460-4460 m a.s.l with a width of similar to 2 km during the observation period. We compare these profiles with the vertical profiles observed over Gadanki (13.5 degrees N, 79.2 degrees E, similar to 370 m a.s.l), a tropical station, where no such elevated aerosol layer was found. Further, there is a steady increase in aerosol optical depth (AOD) from January (winter) to May (summer) from 0.043 to 0.742, respectively, at Manora Peak, indicating aerosol loading in the atmosphere. Our observations show north-westerly winds indicating the convective lifting of aerosols from far-off regions followed by horizontal long-range transport. The presence of strongly absorbing and scattering aerosols in the elevated layer resulted in a relatively large diurnal mean aerosol surface radiative forcing efficiency (forcing per unit optical depth) of about -65 and -63 W m(-2) and the corresponding mean reduction in the observed net solar flux at the surface (cooling effect) is as high as -22 and -30 W m(-2). The reduction of radiation will heat the lower atmosphere by redistributing the radiation with heating rate of 1.13 and 1.31 K day(-1) for April and May 2008, respectively, in the lower atmosphere.
Resumo:
Interaction of graphene, graphene oxide, and related nanocarbons with radiation gives rise to many novel properties and phenomena. Irradiation of graphene oxide in solid state or in solution by sunlight, UV radiation, or excimer laser radiation reduces it to graphene with negligible oxygen functionalities on the surface. This transformation can be exploited for nanopatterning and for large scale production of reduced graphene oxide (RGO). Laser-induced dehydrogenation of hydrogenated graphene can also be used for this purpose. All such laser-induced transformations are associated with thermal effects. RGO emits blue light on UV excitation, a feature that can be used to generate white light in combination with a yellow emitter. RGO as well as graphene nanoribbons are excellent detectors of infra-red radiation while RGO is a good UV detector.
Resumo:
Chemical reactions inside cells are typically subject to the effects both of the cell's confining surfaces and of the viscoelastic behavior of its contents. In this paper, we show how the outcome of one particular reaction of relevance to cellular biochemistry - the diffusion-limited cyclization of long chain polymers - is influenced by such confinement and crowding effects. More specifically, starting from the Rouse model of polymer dynamics, and invoking the Wilemski-Fixman approximation, we determine the scaling relationship between the mean closure time t(c) of a flexible chain (no excluded volume or hydrodynamic interactions) and the length N of its contour under the following separate conditions: (a) confinement of the chain to a sphere of radius d and (b) modulation of its dynamics by colored Gaussian noise. Among other results, we find that in case (a) when d is much smaller than the size of the chain, t(c) similar to Nd-2, and that in case (b), t(c) similar to N-2/(2 (2H)), H being a number between 1/2 and 1 that characterizes the decay of the noise correlations. H is not known a priori, but values of about 0.7 have been used in the successful characterization of protein conformational dynamics. At this value of H (selected for purposes of illustration), t(c) similar to N-3.4, the high scaling exponent reflecting the slow relaxation of the chain in a viscoelastic medium. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729041]
Resumo:
We calculate the thermopower of monolayer graphene in various circumstances. We consider acoustic phonon scattering which might be the operative scattering mechanism in freestanding films and predict that the thermopower will be linear in any induced gap in the system. Further, the thermopower peaks at the same value of chemical potential (tunable by gate voltage) independent of the gap. We show that in the semiclassical approximation, the thermopower in a magnetic field saturates at high field to a value which can be calculated exactly and is independent of the details of the scattering. This effect might be observable experimentally. We also note that a Yukawa scattering potential can be used to fit experimental data for the thermopower for reasonable values of the screening length parameter.
Resumo:
Experiments have shown strong effects of some substrates on the localized plasmons of metallic nano particles but they are inconclusive on the affecting parameters. Here, we have used discrete dipole approximation in conjunction with Sommerfeld integral relations to explain the effect of the substrates as a function of the parameters of incident radiation. The radiative coupling can both quench and enhance the resonance and its dependence on the angle and polarization of incident radiation with respect to the surface is shown. Non-radiative interaction with the substrate enhances the plasmon resonance of the particles and can shift the resonances from their free-space energies significantly. The non-radiative interaction of the substrate is sensitive to the shape of particles and polarization of incident radiation with respect to substrate. Our results show that the plasmon resonances in coupled and single particles can be significantly altered from their free-space resonances and are quenched or enhanced by the choice of substrate and polarization of incident radiation. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4736544]
Resumo:
In this work, several tertiary amine-based diaryl diselenides were synthesized and evaluated for their glutathione peroxidase (GPx)-like antioxidant activities using hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide as substrates and thiophenol (PhSH) and glutathione (GSH) as co-substrates. A comparison of the GPx-like activity of 4-methoxy-substituted N,N-dialkylbenzylamine-based diselenides with that of the corresponding 6-methoxy-substituted compounds indicates that the activity highly depends on the position of the methoxy substituent. Although the methoxy group at 4- and 6-position alters the electronic properties of selenium, the substitution at the 6-position provides the required steric protection for some of the key intermediates in the catalytic cycle. A detailed experimental and theoretical investigation reveals that the 6-methoxy substituent prevents the undesired thiol exchange reactions at the selenium centers in the selenenyl sulfide intermediates. The 6-methoxy substituent also prevents the formation of seleninic and selenonic acids. When PhSH is used as the thiol co-substrate, the 4-methoxy-substituted diselenides exhibit GPx-like activity similar to that of the parent compounds as the 4-methoxy substituent does not block the selenium center in the selenenyl sulfide intermediates from thiol exchange reactions. In contrast, the 4-methoxy substituent significantly enhances the GPx-like activity of the diselenides when glutathione (GSH) is used as the co-substrate. (C) 2012 Elsevier Ltd. All rights reserved.