956 resultados para PATHOGENIC FUNGUS
Resumo:
Seven novel antigens of Mycobacterium tuberculosis, which had previously been identified based on reactivity to sera from patients with tuberculosis, were characterized. Nucleotide sequence analysis of the genes encoding these seven antigens identified one of them as the FtsH and a second as the aminoimidazole ribotide synthase of M. tuberculosis. Antisera raised to the recombinant forms of each of these seven antigens were used to study the distribution of these proteins within mycobacterial species as well as to determine their subcellular localization and hydrophobicity. Four of the seven antigens were conserved only among pathogenic strains of mycobacteria. Of the seven proteins studied, FtsH and a second protein of unknown identity were localized in membranes. Two were cytosolic, while two others, which had a high proline content, were tightly associated with the cell wall. One protein was secreted. This secreted protein could be identified by serum from a majority of tuberculosis patients but not BCG-vaccinated individuals, suggesting its potential use in the immunodiagnosis of tuberculosis.
Resumo:
Recently, a growing amount of attention has been focused on the utility of biosensors for biomedical applications. Combined with nanomaterials and nanostructures, nano-scaled biosensors are installed for biomedical applications, such as pathogenic bacteria monitoring, virus recognition, disease biomarker detection, among others. These nano-biosensors offer a number of advantages and in many respects are ideally suited to biomedical applications, which could be made as extremely flexible devices, allowing biomedical analysis with speediness, excellent selectivity and high sensitivity. This minireview discusses the literature published in the latest years on the advances in biomedical applications of nano-scaled biosensors for disease bio-marking and detection, especially in bio-imaging and the diagnosis of pathological cells and viruses, monitoring pathogenic bacteria, thus providing insight into the future prospects of biosensors in relevant clinical applications.
Resumo:
Fumonisin B1 (FB1) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and therefore there may also be human exposure to Fusarium mycotoxins, including FB1. FB1 affects the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase. It is neuro-, hepato- and nephrotoxic, and it is classified as possibly carcinogenic to humans. This study aimed to clarify the mechanisms behind FB1-induced neuro- and immunotoxicity. Four neural and glial cell lines of human, rat and mouse origin were exposed to graded doses of FB1 and the effects on the production of reactive oxygen species, lipid peroxidation, intracellular glutathione levels, cell viability and apoptosis were investigated. Furthermore, the effects of FB1, alone or together with lipopolysaccharide (LPS), on the mRNA and protein expression levels of different cytokines and chemokines were studied in human dendritic cells (DC). FB1 induced oxidative stress and cell death in all cell lines studied. Generally, the effects were only seen after prolonged exposure at 10 and 100 µM of FB1. Signs of apoptosis were also seen in all four cell lines. The sensitivities of the cell lines used in this study towards FB1 may be classified as human U-118MG glioblastoma > mouse GT1-7 hypothalamic > rat C6 glioblastoma > human SH-SY5Y neuroblastoma cells. When comparing cell lines of human origin, it can be concluded that glial cells seem to be more sensitive towards FB1 toxicity than those of neural origin. After exposure to FB1, significantly increased levels of the cytokine interferon-γ (IFNγ) were detected in human DC. This observation was further confirmed by FB1-induced levels of the chemokine CXCL9, which is known to be regulated by IFNγ. During co-exposure of DC to both LPS and FB1, significant inhibitions of the LPS-induced levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1β, and their regulatory chemokines CCL3 and CCL5 were observed. FB1 can thus affect immune responses in DC, and therefore, it is rather likely that it also affects other types of cells participating in the immune defence system. When evaluating the toxicity potential of FB1, it is important to consider the effects on different cell types and cell-cell interactions. The results of this study represent new information, especially about the mechanisms behind FB1-induced oxidative stress, apoptosis and immunotoxicity, as well as the varying sensitivities of different cell types towards FB1.
Resumo:
The aims of this investigation were to enumerate coliforms in fresh mangoes, puree, cheeks, and cheeks-in-puree in order to determine the source of these organisms in the processed products, to determine methods for their control, and to identify coliforms isolated from cheeks-in-puree to determine whether they have any public health significance. Product from four processors was tested on two occasions. The retail packs of cheeks-in-puree having the highest coliform counts were those in which raw puree was added to the cheeks. Coliform counts in these samples ranged between 1.4 × 103 and 5.4 × 104 cfu/g. Pasteurisation reduced the coliform count of raw puree to < 5 cfu/g. Forty-seven percent of the 73 colonies, isolated as coliforms on the basis of their colony morphology on violet red bile agar, were identified as Klebsiella pneumoniae using the ATB 32E Identification System. Klebsiella strains were tested for growth at 10 °C, faecal coliform response, and fermentation of -melizitose, to differentiate the three phenotypically similar strains, K. pneumoniae, K. terrigena and K planticola. Results indicated that 41% of K. pneumoniae isolates gave reactions typical of K. pneumoniae. A further 44% of strains gave an atypical reaction pattern for these tests and were designated ‘psychrotrophic’ K. pneumoniae. Klebsiella pneumoniae counts of between 2.1 × 103 and 4.9 × 104 cfu/g were predicted to occur in the retail packs of mango cheeks-in-puree produced by the processors who constituted this product with raw puree. In view of the opportunistic pathogenic nature of K. pneumoniae, its presence in these products is considered undesirable and steps, such as pasteurisation of puree, should be taken in order to inactivate it
Resumo:
Fortunately, plants have developed highly effective mechanisms with which to defend themselves when attacked by potentially disease-causing microorganisms. If not, then they would succumb to the many pathogenic fungi, bacteria, viruses, nematodes and insect pests, and disease would prevail. These natural defence systems of plants can be deliberately activated to provide some protection against the major pathogens responsible for causing severe yield losses in agricultural and horticultural crops. This is the basis of what is known as ‘induced’ or ‘acquired’ disease resistance in plants. Although the phenomenon of induced resistance has been known amongst plant pathologists for over 100 years, its inclusion into pest and disease management programmes has been a relatively recent development, ie. within the last 5 years. This review will discuss very briefly some of the characteristics of the induced resistance phenomenon, outline some of the advantages and limitations to its implementation and provide some examples within a postharvest pathology context. Finally some approaches being investigated by the fruit pathology team at DPI Indooroopilly and collaborators will be outlined.
Resumo:
The fungus causing anthracnose disease in mango, Colletotrichum gloeosporioides, (C g.), infects immature fruit early in the season, then enters a long latent phase. After harvest, when fruit start to ripen, the latency breaks and the fungus ramifies through the peel and pulp tissues causing black disease lesions. The breaking of pathogen latency in ripening mango fruit has been correlated with decreasing concentrations of the endogenous antifungal resorcinol compounds (Droby et al., 1986). The level of these antifungal resorcinols vary among mango cultivars (Droby et a1 , 1986). Controlling diseases by managing natural resistance of fruit to fungal attack could minimize the use of pesticides, which have become of major public concern on health and environmental grounds. The plant resistance activator benzo(l,2,3)thiadiazole-7-carbothioic acid S-methyl ester (trade name Bion®) has been widely reported as an effective inducer of systemic resistance. For example, Bion® was reported to induce pathogenesis-related proteins (PR proteins) and stimulate plant defence in peas (Dann and Deverall, 2000) and roses (Suo and Leung, 2001). However, until now, there is no information about the role of Bion® in activation of mango (cv. Kensington Pride) fruit resistance to anthracnose disease. The aim of this research is to determine the effect of resistance activators on defence responses of mango fruit to anthracnose disease.
Resumo:
Two isolates of Haemophilus paragallinarum were obtained from a layer chicken in Mexico. The isolates were confirmed as H. paragallinarum by polymerase chain reaction and conventional biochemical identification. The isolates were nicotinamide adenine dinucleotide (NAD) independent—growing on blood agar without the need of a nurse colony as well as on a complex medium that lacked both NAD and chicken serum. Both isolates were pathogenic, causing the typical clinical signs of infectious coryza in susceptible chickens. One isolate was Page serovar B/Kume serovar B-1 and the other isolate was Page serovar C/Kume serovar C-2. The isolates were associated with a field outbreak that involved an egg drop of 20% over a 3 wk period and a doubling of weekly mortality (from 0.1% to 0.2%). This is the first report of NAD-independent H. paragallinarum outside South Africa and is the first time that NADindependent H. paragallinarum of serovar B has been reported. Abbreviations: NAD ¼ nicotinamide adenine dinucleotide; NAM ¼ nicotinamide; PCR ¼ polymerase chain reaction; TM ¼ complete growth medium without chicken serum or nicotinamide adenine dinucleotide; TM/SN ¼ complete growth medium that contains both chicken serum and nicotinamide adenine dinucleotide
Resumo:
The virulence of the reference strains of the nine currently recognized Kume serovars of Haemophilus paragallinarum was investigated. The capacity of the H. paragallinarum strains to cause the typical clinical signs of upper respiratory tract disease associated with infectious coryza in unvaccinated, nasal-challenged chickens was assessed. Differences in virulence were assessed by means of a standardized scoring system for clinical signs. All nine strains were pathogenic to chickens, producing typical clinical signs of infectious coryza. The highest clinical signs score was obtained for serovar C-1 (1.72), while the lowest clinical signs score was obtained for serovar C-4 (0.32). Our results indicate that virulence differences exist among the serovars of H. paragallinarum.
Resumo:
Weaner pigs on a farm near Beaudesert in south eastern Queensland refused to eat feed comprised largely of wheat and barley. Older pigs consumed small amounts and some prepubertal gilts subsequently displayed enlarged and reddened vulvas. Wheat, barley and triticale were grown on the farm during 1983, which was unusually and persistently wet. The wheat and triticale were harvested and stored for about 3 weeks with moisture contents above 14% before being fed. Samples of the wheat and triticale contained pale pink grains, which can indicate infection by the fungus Fusariurn grarninearurn Schw. On analysis 2 mycotoxins known to be produced by F. graminearurn were detected, deoxynivalenol (vomitoxin) which causes feed refusal and vomiting, and zearalenone which causes oestrogenic effects. Concentrations of deoxynivalenol in the wheat, triticale and barley were 34, 10, and <0.1 mg/kg respectively. Concentrations of zearalenone were 6.2, 2.8 and 0.1 mg/kg respectively. Subsequently, F. grarninearurn was isolated from grains and crop residues. Although the wet weather contributed to F. grarninearurn infection of the crops before harvest, most of the toxins probably developed during storage.
Resumo:
Solvent extracts of cultures of the fungus Paecilomyces varioti are toxic to sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Different components of the culture extracts were isolated and bioassayed with L. cuprina. The component with most toxicity was purified and identified from its proton magnetic resonance spectrum as viriditoxin, a known antibiotic metabolite of the fungus. The insecticidal properties of viriditoxin were then evaluated. Mean LCso values for first instar larvae of organophosphate susceptible and resistant strains of L. cuprina were 7.5 and 8.4 ppm respectively. Pilot implant trials in sheep demonstrated that the compound provided protection for 9-17 weeks against both strains of L. cuprina. No adverse effects on the trial sheep were detected.
Resumo:
Objective To attenuate two strains of Eimeria tenella by selecting for precocious development and evaluate the strains in characterisation trials and by field evaluation, to choose one precocious line for incorporation into an Australian live coccidiosis vaccine for poultry. Design Two strains from non-commercial flocks were passaged through chickens while selecting for precocious development. Each strain was characterised for drug sensitivity, pathogenicity, protection against homologous and heterologous challenge, and oocyst output in replicated experiments in which the experimental unit was a cage of three birds. Oocyst output and/or body weight gain data collected over a 10 to 12 day period following final inoculation were measured. Feed conversion ratios were also calculated where possible. Results Fifteen passages resulted in prepatent periods reduced by 24 h for the Redlands strain (from 144 h to 120 h)and 23 h for the Darryl strain (from 139 h to 116 h). Characterisation trials demonstrated that each precocious line was significantly less pathogenic than its parent strain and each effectively induced immunity that protected chickens against challenge with both the parent strain and other virulent field strains. Both lines had oocyst outputs that, although significantly reduced relative to the parent strains, remained sufficiently high for commercial vaccine production, and both showed susceptibility to coccidiostats. Conclusion Two attenuated lines have been produced that exhibit the appropriate characteristics for use in an Australian live coccidiosis vaccine.
Resumo:
Isolates of Sclerotinia sclerotiorum were collected from infected lentil plants from 2 agro-ecological zones of Syria and used to study their comparative growth on culture media and pathogenicity on different lentil genotypes. The growth studies were carried out on Potato Dextrose Agar (PDA) growth media under laboratory conditions. Mycelial radial growth and sclerotial production were the parameters used to compare the isolates. Pathogenicity studies were carried out with selected isolates on 10 lentil genotypes, infected as detached shoots and as whole potted-plants in the plastic house. The isolates showed considerable variation in cultural characteristics through mycelial growth, mycelial pigmentation and sclerotial production in the media plates. There were significant differences in the growth and sclerotial production of most of the isolates, but no apparent correlation between mycelial growth and sclerotial production among the isolates. Genotype by isolate interactions was significant for the isolates tested for pathogenicity. These interactions, however, appeared to be caused by differences in virulence of the isolates and did not suggest the occurrence of distinct pathogenic races of the pathogen isolates.
Resumo:
Kirramyces destructans is a serious pathogen causing a leaf, bud and shoot blight disease of Eucalyptus plantations in the subtropics and tropics of South-East Asia. During surveillance of eucalypt taxa trials in northern Queensland, symptoms resembling those of K. destructans were observed on Eucalyptus grandis and E. grandis × E. camaldulensis. Phylogenetic and morphological studies revealed that the Kirramyces sp. associated with these symptoms represents a new taxon described here as K. viscidus sp. nov., which is closely related to K. destructans. Plantation assessments revealed that while E. grandis from the Copperload provenance, collected in northern Queensland, recovered from disease, E. grandis × E. camaldulensis hybrids from South America were highly susceptible to infection by K. viscidus and are not recommended for planting in northern Queensland. Preliminary results suggest the fungus probably originates from Australia. K. viscidus is closely related to K. destructans and causes a disease with similar symptoms, suggesting that it could seriously damage Australian eucalypt plantations, especially those planted off-site.
Resumo:
The ribosomal DNA internal transcribed spacer region was amplified and sequenced from a selection of specimens of the Sporobolus smut Ustilago sporoboli-indici. Phylogenetic comparison with other Ustilago and Sporisorium species revealed strong support for an evolutionary radiation of Ustilago species infecting the Chloridoideae and Pooideae, of which U. sporoboli-indici forms a major lineage. Comparisons are made with other groups of plant pathogenic fungi, and it is concluded that phylogenetic analyses of potential biocontrol agents are useful for identifying pathogens that are derived from evolutionary lineages that parasitize a wide range of unrelated plants. Such pathogens are less desirable as biocontrol agents as they may have a greater likelihood of infecting plants outside their normal host ranges.
Resumo:
Fusarium wilt of cotton, caused by the fungus Fusarium oxysporum Schlechtend. f. sp. vasinfectum (Atk.) Snyd. & Hans, was first identified in 1892 in cotton growing in sandy acid soils in Alabama (8). Although the disease was soon discovered in other major cotton-producing areas, it did not become global until the end of the next century. After its original discovery, Fusarium wilt of cotton was reported in Egypt (1902) (30), India (1908) (60), Tanzania (1954) (110), California (1959) (33), Sudan (1960) (44), Israel (1970) (27), Brazil (1978) (5), China (1981) (17), and Australia (1993) (56). In addition to a worldwide distribution, Fusarium wilt occurs in all four of the domesticated cottons, Gossypium arboretum L., G. barbadense L., G. herbaceum L., and G. hirsutum L. (4,30). Disease losses in cotton are highly variable within a country or region. In severely infested fields planted with susceptible cultivars, yield losses can be high. In California, complete crop losses in individual fields have been observed (R. M. Davis, unpublished). Disease loss estimates prepared by the National Cotton Disease Council indicate losses of over 109,000 bales (227 kg or 500 lb) in the United States in 2004 (12).