978 resultados para PANEL SOLAR
Resumo:
Theoretical electron-density-sensitive emission line ratios involving 2s(2)2p(2)-2s2p(3) transitions in Si IX between 223 and 350 Angstrom are presented. A comparison of these with an extensive dataset of solar-active-region, quiet-Sun, subflare and off-limb observations, obtained during rocket flights by the Solar EUV Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and experiment. This provides support for the accuracy of the line- ratio diagnostics, and hence the atomic data on which they are based. In particular, the density-sensitive intensity ratio I (258.10 Angstrom)/ I (349.87 Angstrom) offers an especially promising diagnostic for studies of coronal plasmas, as it involves two reasonably strong emission lines and varies by more than an order of magnitude over the useful density range of 10(9)-10(11) cm(-3). The 2s(2)2p(2) S-1(0) - 2s2p(3) P-1(1) transition at 259.77 Angstrom is very marginally identified for the first time in the SERTS database, although it has previously been detected in solar flare observations.
Resumo:
Theoretical emission-line ratios involving transitions in the 236-412 Angstrom wavelength range are presented for the Na-like ions Ar viii, Cr xiv, Mn xv, Fe xvi, Co xvii, Ni xviii and Zn xx. A comparison of these with an extensive data set of the solar active region, quiet-Sun, subflare and off-limb observations, obtained during rocket flights by the Solar EUV Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and experiment. This indicates that most of the Na-like ion lines are reliably detected in the SERTS observations, and hence may be employed with confidence in solar spectral analyses. However, the features in the SERTS spectra at 236.34 and 300.25 Angstrom, originally identified as the Ni xviii 3p (2) P-3/2 -3d (2) D- 3/2 and Cr xiv 3p (2) P-3/2 -3d (2) D-5/2 transitions, respectively, are found to be due to emission lines of Ar xiii (236.34 Angstrom) and possibly S v or Ni vi (300.25 Angstrom). The Co xvii 3s (2) S-3p (2) P-3/2 line at 312.55 Angstrom is always badly blended with an Fe xv feature at the same wavelength, but Mn xv 3s (2) S-3p (2) P-1/2 at 384.75 Angstrom may not always be as affected by second-order emission from Fe xii 192.37 Angstrom as previously thought. On the other hand, we find that the Zn xx 3s (2) S-3p (2) P-3/2 transition can sometimes make a significant contribution to the Zn xx/Fe xiii 256.43- Angstrom blend, and hence care must be taken when using this feature as an Fe xiii electron density diagnostic. A line in the SERTS-89 active region spectrum at 265.00 Angstrom has been re-assessed, and we confirm its identification as the Fe xvi 3p (2) P-3/2 -3d (2) D-3/2 transition.
Resumo:
R-matrix calculations of electron impact excitation rates in N- like S x are used to derive theoretical emission-line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 189-265 Angstrom wavelength range. A comparison of these with observational data for solar flares and active regions, obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab and the Solar EUV Rocket Telescope and Spectrograph, reveals that many of the S x lines in the spectra are badly blended with emission features from other species. However, the intensity ratios I(228.70 Angstrom)/I(264.24 Angstrom) and I(228.70 Angstrom)/I(259.49 Angstrom) are found to provide useful electron density diagnostics for flares, although the latter cannot be employed for active regions, because of blending of the 259.49 Angstrom line with an unidentified transition in these solar features.
Resumo:
Theoretical electron density sensitive emission line ratios involving a total of eleven 2s(2)2p(2)-2s2p(3) transitions in S XI between 187 and 292 Angstrom are presented. A comparison of these with solar active region observations obtained during rocket flights by the Solar EUV Rocket Telescope and Spectrograph (SERTS) reveals generally good agreement between theory and experiment. However, the 186.87 Angstrom line is masked by fairly strong Fe XII emission at the same wavelength, while 239.83 Angstrom is blended with an unknown feature, and 285.58 Angstrom is blended with possibly N IV 285.56 Angstrom. In addition, the 191.23 Angstrom line appears to be more seriously blended with an Fe XIII feature than previously believed. The presence of several new S XI lines is confirmed in the SERTS spectra, at wavelengths of 188.66, 247.14 and 291.59 Angstrom, in excellent agreement with laboratory measurements. In particular, the detection of the 2s(2)2p(2) P- 3(1) -2s2p(3) P-3(0,1) transitions at 242.91 Angstrom is the first time (to our knowledge) that this feature has been identified in the solar spectrum. The potential usefulness of the S XI line ratios as electron density diagnostics for the solar transition region and corona is briefly discussed.
Resumo:
The inclusion of collisional rates for He-like Fe and Ca ions is discussed with reference to the analysis of solar flare Fe XXV and Ca XIX line emission, particularly from the Yohkoh Bragg Crystal Spectrometer (BCS). The new data are a slight improvement on calculations presently used in the BCS analysis software in that the discrepancy in the Fe XXV y and z line intensities (observed larger than predicted) is reduced. Values of electron temperature from satellite-to-resonance line ratios are slightly reduced (by up to 1 MK) for a given observed ratio. The new atomic data will be incorporated in the Yohkoh BCS databases. The data should also be of interest for the analysis of high-resolution, non-solar spectra expected from the Constellation-X and Astro-E space missions. A comparison is made of a tokamak S XV spectrum with a synthetic spectrum using atomic data in the existing software and the agreement is found to be good, so validating these data for particularly high-n satellite wavelengths close to the S XV resonance line. An error in a data file used for analyzing BCS Fe XXVI spectra is corrected, so permitting analysis of these spectra.
Resumo:
The Solar Eclipse Corona Imaging System (SECIS) was used to record high-cadence observations of the solar corona during the total solar eclipse of 1999 August 11. During the 2 min 23.5 s of totality, 6364 images were recorded simultaneously in each of the two channels: a white light channel, and the Fe xiv (5303 Angstrom) 'green line' channel (T similar to2 MK). Here we report initial results from the SECIS experiment, including the discovery of a 6-s intensity oscillation in an active region coronal loop.
Resumo:
Previously, large discrepancies have been found between theory and observation for Fe XV emission line ratios in solar flare spectra covering the 224-327 angstrom wavelength range, obtained by the Naval Research Laboratory's S082A instrument on board Skylab. These discrepancies have been attributed to either errors in the adopted atomic data or the presence of additional atomic processes not included in the modelling, such as fluorescence. However our analysis of these plus other S082A flare observations (the latter containing Fe XV transitions between 321-482 angstrom), performed using the most recent Fe XV atomic physics calculations in conjunction with a chianti synthetic flare spectrum, indicate that blending of the lines is primarily responsible for the discrepancies. As a result, most Fe XV lines cannot be employed as electron density diagnostics for solar flares, at least at the spectral resolution of S082A and similar instruments (i.e.similar to 0.1 angstrom). An exception is the intensity ratio I(3s3p P-3(2)-3p(2) P-3(1))/I(3s3p P-3(2)-3p(2) D-1(2))=I(321.8 angstrom)/I(327.0 angstrom), which appears to provide good estimates of the electron density at this spectral resolution.
Resumo:
Observational evidence of gentle chromospheric evaporation during the impulsive phase of a C9.1 solar flare is presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory. Until now, evidence of gentle evaporation has often been reported during the decay phase of solar flares, where thermal conduction is thought to be the driving mechanism. Here we show that the chromospheric response to a low flux of nonthermal electrons (>= 5 cm(-2) s(-1)) results in plasma upflows of 13 +/- 16, 16 +/- 18, and 110 +/- 58 km s(-1) in the cool He I and O V emission lines and the 8 MK Fe XIX line, respectively. These findings, in conjunction with other recently reported work, now confirm that the dynamic response of the solar atmosphere is sensitively dependent on the flux of incident electrons.
Resumo:
Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge exchange in collisions between fully ionized helium and target gasses characteristic of cometary and planetary atmospheres (H2O, CO2, CO, and CH4). The experiments were performed at velocities typical for the solar wind (200-1500 km s(-1)). Data sets are produced that can be used for modeling the interaction of solar wind alpha particles with cometary and planetary atmospheres. These data sets are used to demonstrate the diagnostic potential of helium line emission. Existing Extreme Ultraviolet Explorer (EUVE) observations of comets Hyakutake and Hale-Bopp are analyzed in terms of solar wind and coma characteristics. The case of Hale-Bopp illustrates well the dependence of the helium line emission to the collision velocity. For Hale-Bopp, our model requires low velocities in the interaction zone. We interpret this as the effect of severe post-bow shock cooling in this extraordinary large comet.
A panel of single locus minisatellite DNA probes for application to problems in salmonid aquaculture
Resumo:
Eleven minisatellite DNA locus specific probes, isolated from Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) partial genomic DNA libraries, were tested for cross-hybridization to eleven other salmonid species, i.e. sockeye salmon (Oncorhynchus nerka); coho salmon (O. kisutch), chum salmon (O. keta); pink salmon (O. gorbuscha); chinook salmon (O. tshawytscha); rainbow trout (O. mykiss); brook trout (Salvelinus fontinalis); Arctic charr (S. alpinus); grayling (Thymallus thymallus); huchen (Hucho hucho); pollan (Coregonus autumnalis). Simple single locus profiles for each of these species were revealed by, from two to ten SLPs. These markers are likely to be of great value in addressing several problems in aquaculture of these species.
Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells
Resumo:
The behavior of a model ionic liquid (IL) confined between two flat parallel walls was studied at various interwall distances using computer simulations. The results focus both on structural and dynamical properties. Mass and charge density along the confinement axis reveal a structure of layers parallel to the walls that leads to an oscillatory profile in the electrostatic potential. Orientational correlation functions indicate that cations at the interface orient tilted with respect to the surface and that any other orientational order is lost thereafter. The diffusion coefficients of the ions exhibit a maximum as a function of the confinement distance, a behavior that results from a combination of the structure of the liquid as a whole and a faster molecular motion in the vicinity of the walls. We discuss the relevance of the present results and elaborate on topics that need further attention regarding the effects of ILs in the functioning of IL-based dye-sensitized solar cells.
Resumo:
Two cores of mid-Holocene raised-bog deposits from the Netherlands were 14C wiggle-match dated at high precision. Changes in local moisture conditions were inferred from the changing species composition of consecutive series of macrofossil samples. Several wet-shifts were inferred, and these were often coeval with major rises in the D14C archive (probably caused by major declines in solar activity). The use of D14C as a proxy for changes in solar activity is validated. This paper adds to the increasing body of evidence that solar variability forced climatic changes during the Holocene.