928 resultados para Osmotic Tolerance
Resumo:
Since the fifteen century, the rainfed-cultivation of wheat for grain is traditionally performed on the Island of Madeira. Under several microclimatic conditions and along very sloppy mountains, the landraces are grown on isolated terraces of Andosols with high amounts of iron. Iron oxides are the main inorganic binding agent contributing to the stability of aggregates and to soil fertility in long-term sustainable agriculture in acid and iron-rich soils. After a two day period of seedling initial growth, a screening test of sixty traditional wheat (Triticum spp.) landraces from the ISOPlexis Genebank at the University of Madeira, Funchal, was performed using nutrient solutions containing 10 or 600 mM Fe, during five days, under controlled laboratory conditions. The elongation of the longest primary root was measured for each genotype and the mean root increment relative to control (as, % relative root increment or RRI; n=28) calculated. This parameter appeared to be a sensitive indicator of Fe tolerance in wheat. Over 85% of wheat germplasm showed the RRI higher than 50%, while the RRI of seven accessions exceeded 70%. This indicates that those landraces are Fe tolerant and might be of particular interest for cultivation under acid rich iron soils of tropical and subtropical areas.
Resumo:
Vigna unguiculata (L.) Walp (cowpea) is a food crop with high nutritional value that is cultivated throughout tropical and subtropical regions of the world. The main constraint on high productivity of cowpea is water deficit, caused by the long periods of drought that occur in these regions. The aim of the present study was to select elite cowpea genotypes with enhanced drought tolerance, by applying principal component analysis to 219 first-cycle progenies obtained in a recurrent selection program. The experimental design comprised a simple 15 x 15 lattice with 450 plots, each of two rows of 10 plants. Plants were grown under water-deficit conditions by applying a water depth of 205 mm representing one-half of that required by cowpea. Variables assessed were flowering, maturation, pod length, number and mass of beans/pod, mass of 100 beans, and productivity/plot. Ten elite cowpea genotypes were selected, in which principal components 1 and 2 encompassed variables related to yield (pod length, beans/pod, and productivity/plot) and life precocity (flowering and maturation), respectively.
Resumo:
2016
Resumo:
The identification and validation of candidate genes related to traits of interest is a time consuming and expensive process and the homology among genes from different species can facilitate the identification of genes of the target species from the genomic information of a model species. This study aimed to quantify the expression of homologous rice genes previously related to drought tolerance in Arabidopsis. Five genes (CPK6, PLDa, GluR2, CesA8, and EIN2) were identified in rice by the homology of the amino acid sequence between rice and Arabidopsis. The genotypes Douradão (drought tolerant) and Primavera (drought susceptible) were subjected to a water deficit experiment, and subsequently evaluated for gene expression by qPCR for the five homologous and Lsi1 genes. The qPCR analysis clearly showed that the five homologous genes were expressed in rice, which is an indication that these genes could preserve their function in rice as a response to drought. In Douradão, of the five homologous genes, all but OsGluR2 displayed an increase in the average expression in drought treatment when compared to the control, while in Primavera, the average expression of the five genes did not differ between the control and drought treatment. In Douradão, the OsPLDa1, which showed the higher expression level in drought in relation to the control (10.82), significantly increased the gene expression in the leaf and root tissues as a response to drought, in both vegetative and reproductive stages, whereas in Primavera, this gene was suppressed in both tissues and stages under drought. Therefore, the OsPLDa1 gene was the most important in relation to drought response and is an interesting candidate for further studies in developing rice cultivars that are more tolerant to this stress.
Resumo:
The Brazilian guava (Psidium guineense Swartz) is seed-propagated and, being native to the Caatinga biome, may frequently have uneven germination.Thus, we aimed to evaluate the synchronization of the in vitro seed germination of three accessions of the Brazilian guava, using water, polyethyleneglycol (PEG 6000), and potassium nitrate (KNO3) at different potentials and times of osmotic priming. Seeds from three accessions of the Brazilian guava (Y85, Y93,and Y97) from the UNEB/BA Germplasm Active Bank were subjected to the following pretreatments: -0.6, -1.0, -1.4, and -1,8 MPa PEG 6000; 10 and 20% KNO3 for 24h; 10 and 20% KNO3 for 48h; water for 24 and 48h; and non-primed seeds as the control. The experimental design was therefore a 10x3+1 factorial scheme. We assessed the germination percentage (G), mean germination time (MGT), germination speed (GS), and germination speed index (GSI). Data was subjected to analysis of variance followed by a means test (Duncan at 5% probability) and regression. There was interaction between the priming treatments and accessions for all evaluated features, except G. PEG 6000 decreased the MGT (from 6 to 8 days) and increased GS and GSI of seeds from all three accessions at potentials -1.0 to -1.5 MPa.Water-priming had a positive effect on MGT, GS, and GSI of accession Y85 seeds. KNO3 negatively affected germination of seeds from all three accessions. Thereby, we could synchronize seed germination of accessions Y85 and Y97 with PEG 6000.
Resumo:
2008
Resumo:
2008
Resumo:
2008
Resumo:
2008
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
The challenging requirements set on new full composite aeronautical structures are mostly related to the demonstration of damage tolerance capability of their primary structures, required by the airworthiness bodies. And while composite-made structures inherently demonstrate exceptional fatigue properties, when put in real life working conditions, a number of external factors can lead to impact damages thus reducing drastically their fatigue resistance due to fiber delamination, disbonding or breaking. This PhD aims towards contributing to the better understanding of the behavior of the primary composite aeronautical structure after near-edge impacts which are inevitable during the service life of an aircraft. The behavior of CFRP structures after impacts in only one small piece of the big picture which is the certification of CFRP built aircraft, where several other parameters need to be evaluated in order to fulfill the airworthiness requirements. These parameters are also discussed in this PhD thesis in order to give a better understanding of the complex task of CFRP structure certification, in which behavior of the impacted structure plays an important role. An experimental and numerical campaign was carried out in order to determine the level of delamination damage in CFRP specimens after near-edge impacts. By calibrating the numerical model with experimental data, it was possible, for different configurations and energy levels, to predict the extension of a delamination in a CFRP structure and to estimate its residual static strength using a very simple but robust technique. The original contribution of this work to the analysis of CFRP structures is the creation of a model which could be applicable to wide range of thicknesses and stacking sequences of CFRP structures, thus potentially being suitable for industrial application, as well.
Resumo:
Composite materials characteristics are highly influenced by foreign objects impacts. My research focused on how a Low Velocity Impact and, therefore, Barely Visible Impact Damages, can reduce carbon/epoxy laminates compressive residual characteristics and which could be an improvement of their impact resistance. Solution was found out in Fibre Metal Laminates. Experimental and numerical analysis were performed on Carbon/Epoxy and Fibre Metal Laminate.
Resumo:
Heat stress negatively affects wheat performance during its entire cycle, particularly during the reproductive stage. In view of the climate change and the prediction of a continued increase in temperature in the new future, it is urgent to concentrate efforts to discover novel genetic sources able to improve the resilience of wheat to heat stress. In this direction, this study addressed two different experiments in durum wheat to identify novel QTLs suitable to be applied in marker-assisted selection for heat tolerance. Chlorophyll fluorescence (ChlF) is a valuable indicator of plant response to environmental changes allowing a detailed assessment of PSII activity in view of its non-invasive measurement and high-throughput phenotyping. In the first study (Chapter 2), the Light-Induced Fluorescence Transient (LIFT) method was used to access ChlF data to map QTLs for ChlF-related traits during the vegetative growth stage in durum wheat under heat stress condition. Our results provide evidence that LIFT consistently measures ChlF at the level of high-throughput phenotyping combined with high accuracy which is required for Genome-Wide Association Study (GWAS) aimed at identifying genomic regions affecting PSII activity. The 50 QTLs identified for ChlF-related traits under heat stress mostly clustered into five chromosomes hotspots unrelated to phenology, a feature that makes these QTLs a valuable asset for marker-assisted breeding programs across different latitudes. In the second study (Chapter 3), a set of 183 accessions suitable for GWAS, was exposed to optimal and high temperature during two crop seasons under field conditions. Important agronomic traits were evaluated in order to identify valuable QTLs for GY and its components. The GWAS analysis identified several QTLs in the single years as well as in the joint analysis. From the total QTLs identified, 13 QTL clusters can be highlighted to be affecting heat tolerance across different years and/or different traits.