941 resultados para Origin of Species
Resumo:
Incommensurate lattice fluctuations are present in the beta(L) phase (T-c similar to 1.5 K) of ET2I3 (where ET is BEDT-TTF - bis(ethylenedithio)tetrathiafulvalene) but are absent in the beta(H) phase (T-c similar to 7 K). We propose that the disorder in the conformational degrees of freedom of the terminal ethylene groups of the ET molecules, which is required to stabilise the lattice fluctuations, increases the quasiparticle scattering rate and that this leads to the observed difference in the Superconducting critical temperatures, T-c, of the two phases. We calculate the dependence of T-c on the interlayer residual resistivity. Our theory has no free parameters. Our predictions are shown to be consistent with experiment. We describe experiments to conclusively test our hypothesis.
Resumo:
We present a new set of dissipationless N-body simulations to examine the feasibility of creating bright ellipticals (following the Kormendy relation, hereafter KR) by hierarchically merging present-day early-type dwarf galaxies, and to study how the encounter parameters affect the location of the end product in the (mu(e))-R-e plane. We investigate the merging of one-component galaxies of both equal and different masses, the merging of two-component galaxy models to explore the effect of dark haloes on the final galaxy characteristics, and the merging of ultracompact dwarf galaxies. We find that the increase of (mu(e)) with R-e is attributable to an increase in the initial orbital energy. The merger remnants shift down in the (mu(e))-R-e plane and fail to reach the KR. Thus, the KR is not reproducible by mergers of dwarf early-type systems, rendering untenable the theory that present-day dwarfs are responsible for even a small fraction of the present-day ellipticals, unless a considerable amount of dissipation is invoked. However, we do find that present-day dwarfs can be formed by the merger of ultracompact dwarfs.
Resumo:
U-Pb zircon ages from the exposed Sask craton are 2450-3100 Ma, from the Peter Lake Domain 2575-2640 Ma, and from rocks of the Trans-Hudson orogen 1840-1880 Ma. U-Pb monazite and zircon ages of post-orogenic pegmatites and aplites are 1770-1800 Ma. Common Pb and Sm-Nd isotopic compositions of post-orogenic intrusions, as probes of crust beneath the orogen, were compared to Sask craton rocks and ca. 1850 Ma orogenic rocks to infer the origin and subsurface distribution of the Sask craton within the internides of the Trans-Hudson orogen. Results show that post-orogenic intrusions within most of the Glennie Domain and Hanson Lake block were derived, at least in part, from Archean source materials, demonstrating that the Sask craton lies beneath Paleoproterozoic orogenic rocks present at the surface. In contrast, common Pb and Sm-Nd isotopic compositions from pegmatites and aplites of the La Ronge Domain are essentially identical with those of the Paleoproterozoic orogenic rocks into which they are intruded, indicating derivation by partial melting of similar rocks. Thus, if the Sask craton extended to the west beneath the La Ronge Domain, it was beneath the zone of melting that produced the post-orogenic intrusions, making it unlikely that the Sask craton is a detached part of the Hearne craton. Many samples from the Sask craton have elevated Pb-208/Pb-204 ratios, unlike Superior craton or Hearne craton rocks, suggesting that the Sask craton was derived from an exotic source, such as the Wyoming craton, which shares similar elevated Pb-208/Pb-204 ratios.
Resumo:
Insect host-parasitoid interactions provide fascinating examples of evolutionary adaptations in which the parasitoid employs a variety of measures and countermeasures to overcome the immune responses of its host. Maternal factors introduced by the female wasps during egg deposition play an important role in interfering with cellular and humoral components of the host's immune defence. Some of these components actively suppress host immune components and some are believed to confer protection for the developing endoparasitoid by rather passive means. The Venturio conescens/Ephestia kuehniella parrositoid-host system is unique among other systems in that the cellular defence capacity of the host remains virtually intact after parasitization. This system raises some important questions that are discussed in this mini-review: If immune protection of the egg and the emerging larva is achieved by surface properties comprising glycoproteins and virus-like particles (VLPs) produced by the female wasp, why is the prophenoloxidose activating cascade blocked in parasitized caterpillars? Another question is the evolutionary origin of these particles, given that the functional role and structural features of V. canescens VLP proteins are more related to cellular proteins than to viruses.
Resumo:
Numerous authors are apparently unaware that bounds on the trace of a matrix product presented in 1995 were originally published in 1990.
Resumo:
While the crocodyliform. lineage extends back over 200 million years (Myr) to the Late Triassic, modern forms - members of Eusuchia - do not appear until the Cretaceous. Eusuchia includes the crown group Crocodylia, which comprises Crocodyloidea, Alligatoroidea and Gavialoidea. Fossils of non-crocodylian eusuchians are currently rare and, in most instances, fragmentary. Consequently, the transition from Neosuchia to Crocodylia has been one of the most poorly understood areas of crocodyliform evolution. Here we describe a new crocodyliform from the mid-Cretaceous (98-95 Myr ago; Albian-Cenomanian) Winton Formation of Queensland, Australia, as the most primitive member of Eusuchia. The anatomical changes associated with the emergence of this taxon indicate a pivotal shift in the feeding and locomotor behaviour of crocodyliforms - a shift that may be linked to the subsequent rapid diversification of Eusuchia 20 Myr later during the Late Cretaceous and Early Tertiary. While Laurasia (in particular North America) is the most likely ancestral area for Crocodylia, the biogeographic events associated with the origin of Eusuchia are more complex. Although the fossil evidence is limited, it now seems likely that at least part of the early history of Eusuchia transpired in Gondwana.
Resumo:
Data on the occurrence of species are widely used to inform the design of reserve networks. These data contain commission errors (when a species is mistakenly thought to be present) and omission errors (when a species is mistakenly thought to be absent), and the rates of the two types of error are inversely related. Point locality data can minimize commission errors, but those obtained from museum collections are generally sparse, suffer from substantial spatial bias and contain large omission errors. Geographic ranges generate large commission errors because they assume homogenous species distributions. Predicted distribution data make explicit inferences on species occurrence and their commission and omission errors depend on model structure, on the omission of variables that determine species distribution and on data resolution. Omission errors lead to identifying networks of areas for conservation action that are smaller than required and centred on known species occurrences, thus affecting the comprehensiveness, representativeness and efficiency of selected areas. Commission errors lead to selecting areas not relevant to conservation, thus affecting the representativeness and adequacy of reserve networks. Conservation plans should include an estimation of commission and omission errors in underlying species data and explicitly use this information to influence conservation planning outcomes.
Resumo:
We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis (K-leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panama and Belize), we found an overall pattern of declining leaf-specific hydraulic conductivity (K-leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity (K-h) and K-leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.
Resumo:
The biphasic (pelagobenthic) life cycle is found throughout the animal kingdom, and includes gametogenesis, embryogenesis, and metamorphosis. From a tangled web of hypotheses on the origin and evolution of the metazoan pelagobenthic life cycle, current opinion appears to favor a simple, larval-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This hypothesis derives originally from Haeckel's (1874) Gastraea theory of ontogeny recapitulating phylogeny, in which the gastrula is viewed as the recapitulation of a gastracan ancestor that evolved via selection on a simple, planktonic hollow ball of cells to develop the capacity to feed. Here, we propose an equally plausible hypothesis that the origin of the metazoan pelagobenthic life cycle was a direct consequence of sexual reproduction in a likely holobenthic ancestor. In doing so, we take into account new insights from poriferan development and from molecular phylogenies. In this scenario, the gastrula does not represent a recapitulation, but simply an embryological stage that is an outcome of sexual reproduction. The embryo can itself be considered as the precursor to a biphasic lifestyle, with the embryo representing one phase and the adult another phase. This hypothesis is more parsimonious because it precludes the need for multiple, independent origins of the benthic form. It is then reasonable to consider that multilayered, ciliated embryos ultimately released into the water column are subject to natural selection for dispersal/longevity/feeding that sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. These new insights from poriferan development thus clearly support the intercalation hypothesis of bilaterian larval evolution, which we now believe should be extended to discussions of the origin of biphasy in the metazoan last common ancestor.
Resumo:
Humans play a role in deciding the fate of species in the current extinction wave. Because of the previous Similarity Principle, physical attractiveness and likeability, it has been argued that public choice favours the survival of species that satisfy these criteria at the expense of other species. This paper empirically tests this argument by considering a hypothetical ‘Ark’ situation. Surveys of 204 members of the Australian public inquired whether they are in favour of the survival of each of 24 native mammal, bird and reptile species (prior to and after information provision about each species). The species were ranked by percentage of ‘yes’ votes received. Species composition by taxon in various fractions of the ranking was determined. If the previous Similarity Principle holds, mammals should rank highly and dominate the top fractions of animals saved in the hierarchical list. We find that although mammals would be over-represented in the ‘Ark’, birds and reptiles are unlikely to be excluded when social choice is based on numbers ‘voting’ for the survival of each species. Support for the previous Similarity Principle is apparent particularly after information provision. Public policy implications of this are noted and recommendations are given.