963 resultados para Ore tailings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past the steel industry of the United States has depended almost wholly on imports for its supplies of manganese. Although it is well known that there are enormous deposits of low grade manganese ore in the United States the production of substantial amounts of ferro-grade mater­ial from domestic sources presents a field for con­structive and practical research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The largest known deposits of tungsten ores occur in the continuation of the Indo-Malayan Mountains, which extends through Burma, Malaya, China, Japan, and Chosen. Production of tungsten concentrates was started in 1910 in Burma, and in 1911 this country was the world's largest producer. China produced but little until 1916, but has since supplied over fifty per cent of the world's requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potential gold mines lie high among the rugged peaks of the Tobacco Root Mountains of southwestern Montana. This is a region where little geologic work has been done, though extensive mine operations have been carried on, and valuable ore has been shipped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The United States, although the leading consumer of chromite, depends almost entirely on imports for its supply. Domestic production of chromite is limited, because high-grade imported ore is plentiful and inexpensive in normal times. There are several large deposits of chromite in the United States, representing millions of tons of low grade ore. These deposits form a strategic reserve that must be used in time of national emergency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imports of manganese ore probably supply a major proportion of the needs of the United States. Domestic production is reported to be higher than pre-war levels, but does not equal that of the peak production year of 1943. In 1946, the Anaconda Copper Mining Company ac­counted for 90 percent of the total shipments of mangan­ese nodules, and this company is the largest producer of domestic metallurgical ore in the United States.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromite is the most important ore used for the production of chromium and chromium alloys. At present, the domestic production is insignificant as compared with the amount of chromite consumed in the United States.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For many years the Elliston District, of Powell County has been a minor producer of gold, lead, zinc, and silver. Although never among the largest producing districts of the state, it has with the exception of the war years supplied a notable tonnage of ore to the neighboring mills ever since the first placer and lode claims were located there during the late eighteen hundreds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analysed the Mo isotope composition of a comprehensive series of molybdenite samples from the porphyry- type Questa deposit (NM, USA), as well as one rhyolite and one granite sample, directly associated with the Mo mineralization. The δ98Mo of the molybdenites ranges between −0.48‰ and +0.40‰, with a median at −0.05‰. The median Mo isotope composition increases from early magmatic (−0.29‰) to hydrothermal (−0.05‰) breccia mineralization (median bulk breccia = −0.17‰) to late stockwork veining (+0.22‰). Moreover, variations of up to 0.34‰ are found between different molybdenite crystals within an individual hand specimen. The rhyolite sample with 0.12 μg g−1 Mo has δ98Mo = −0.57‰ and is lighter than all molybde- nites from the Questa deposit, interpreted to represent the igneous leftover after aqueous ore fluid exsolution. We recognize three Mo isotope fractionation processes that occur between about 700 and 350 °C, affecting the Mo iso- tope composition of magmatic–hydrothermal molybdenites. Δ1Mo: Minerals preferentially incorporate light Mo isotopes during progressive fractional crystallization in subvolcanic magma reservoirs, leaving behind a melt enriched in heavy Mo isotopes. Δ2Mo: Magmatic–hydrothermal fluids preferentially incorporate heavy Mo iso- topes upon fluid exsolution. Δ3Mo: Light Mo isotopes get preferentially incorporated in molybdenite during crys- tallization from an aqueous fluid, leaving behind a hydrothermal fluid that gets heavier with progressive molybdenite crystallization. The sum of all three fractionation processes produces molybdenites that record heavier δ98Mo compositions than their source magmas. This implies that the mean δ98Mo of molybdenites published so far (~0.4‰) likely represents a maximum value for the Mo isotope composition of Phanerozoic igneous upper crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Yanque nonsulfide Pb-Zn deposit (inferred resources 12.5 Mt @ 3.7% Pb and @ 3.5% Zn) is located in the Andahuaylas-Yauri ore province (Cuzco, southern Peru). The deposit occurs within a base metal mineralized district, centered on the medium-sized Dolores porphyry copper. A thorough geological, mineralogical and geochemical study has carried out in order to define: the relationships between the Dolores Cu-porphyry ore and the Yanque Zn-Pb polymetallic mineralization, and the characteristics of the economic nonsulfide concentrations. Both sedimentary and igneous rocks constitute the backbone of the Yanque-Dolores area. The sedimentary lithologies belong to the Soraya, Mara and Ferrobamba Fms. (upper Jurassic-middle Cretaceous). The Yanque orebody is hosted by the Mara Fm., which prevailingly consists of a siliciclastic sedimentary breccia. The original sulfide mineralization consisted of galena, pyrite and sphalerite. The host rock has been affected by a strong hydrothermal alteration, characterized by prevailing sericite/illite, as in the typical porphyry-related phyllic-argillic alteration stage, and by minor kaolinite, dolomite and quartz. Minor element geochemistry, characterized by Sb, As, Mn, Ag and locally also by Cu, points to magmatic-hydrothermal related mineralizing fluids. The Pb isotopic compositions from Dolores and Yanque sulfides are similar, and are typical of the Tertiary magmatically-derived ores in this part of Peru. The hydrothermally altered rocks at Yanque have the same Pb isotopic compositions as the sulfides, thus confirming the hypothesis that the Yanque primary Zn-Pb mineralization may have been produced by hydrothermal circulation related to the emplacement of the Dolores Cu-porphyry, as it is the case of other porphyry Cu systems associated with polymetallic mineralization elsewhere. However, no simple genetic model for the mineralization involving just one fluid circulation episode is able to explain the data. The Yanque economic nonsulfide ore association consists of sauconite, hemimorphite, smithsonite and cerussite, which result from the weathering and alteration of the original sulfide mineralization. Zinc is allocated mainly in sauconite (Zn-smectite), rather than in carbonates: a factor strictly related to the prevailing siliciclastic character of the host rock. Distinctive features of the Yanque orebody are the comparable ore grades for both Pb and Zn (3.5% Zn and 3.7% Pb), and the inverse supergene chemical zoning. In fact, contrary to other supergene ores of this type, zinc prevails in the top zone of the Yanque deposit, whereas lead content increases with depth. Considering the different mobility of the two metals in solution, it may be assumed that most of the primary zinc that was the source for the Yanque nonsulfides was originally located far from the position occupied by the galena mineralization, whose remnants have been observed on site. Zinc sulfides may have been originally contained in the eroded rock volumes that surrounded the actual deposit: the zinc-rich solutions have possibly migrated through the siliciclastic Mara Fm. and precipitated the nonsulfide minerals by porosity filling and replacement processes. In this sense, the Yanque secondary Zn-Pb deposit could be considered as a special type of “Exotic” mineralization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a trace element - Pb isotope analytical (LIA) database on the "Singen Copper", a peculiar type of copper found in the North Alpine realm, from its type locality, the Early Bronze Age Singen Cemetery (Germany). What distinguishes “Singen Copper” from other coeval copper types? (i) is it a discrete metal lot with a uniform provenance (if so, can its provenance be constrained)? (ii) was it manufactured by a special, unique metallurgical process that can be discriminated from others? Trace element concentrations can give clues on the ore types that were mined, but they can be modified (more or less intentionally) by metallurgical operations. A more robust indicator are the ratios of chemically similar elements (e.g. Co/Ni, Bi/Sb, etc.), since they should remain nearly constant during metallurgical operations, and are expected to behave homogeneously in each mineral of a given mining area, but their partition amongst the different mineral species is known to cause strong inter-element fractionations. We tested the trace element ratio pattern predicted by geochemical arguments on the Brixlegg mining area. Brixlegg itself is not compatible with the Singen Copper objects, and we only report it because it is a rare instance of a mining area for which sufficient trace element analyses are available in the literature. We observe that As/Sb in fahlerz varies by a factor 1.8 above/below median; As/Sb in enargite varies by a factor of 2.5 with a 10 times higher median. Most of the 102 analyzed metal objects from Singen are Sb-Ni-rich, corresponding to “antimony-nickel copper” of the literature. Other trace element concentrations vary by > 100 times, ratios by factors > 50. Pb isotopic compositions are all significantly different from each other. They do not form a single linear array and require > 3 ore batches that certainly do not derive from one single mining area. Our data suggest a heterogeneous provenance of “Singen copper”. Archaeological information limits the scope to Central European sources. LIA requires a diverse supply network from many mining localities, including possibly Brittany. Trace element ratios show more heterogeneity than LIA; this can be explained either by deliberate selection of one particular ore mineral (from very many sources) or by processing of assorted ore minerals from a smaller number of sources, with the unintentional effect that the quality of the copper would not be constant, as the metallurgical properties of alloys would vary with trace element concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thorium and rare-earth element (Th-REE) deposit at Morro do Ferro formed under supergene lateritic weathering conditions. The ore body consists of shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a network of magnetite layers which protected the underlying highly weathered, argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes. From petrological, mineralogical and geochemical studies, and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatitic in composition, initially enriched in Th and REEs compared to the surrounding silicate rocks. The intrusion of the carbonatite caused fenitic alteration in the surrounding phonolites, consisting of early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent weathering has completely decomposed the carbonatite forming a residual supergene enrichment of Th and REEs. Initial weathering of the carbonatite has created a chemical environment that might have been conductive to carbonate and phosphate complexing of the REEs in groundwaters. This may have appreciably restricted the dissolution of primary REE phases. Strongly oxidic weathering has resulted in a fractionation between Ce and the other light rare earth elements (LREEs). Ce3+ is oxidized to Ce4+ and retained together with Th by secondary mineral formation (cerianite, thorianite), and by adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation (Nd-lanthanite) and adsorption at greater depths down the weathering column. Seasonally controlled fluctuations of recharge waters into the weathering column may help to explain the observed repetition of Th-Ce enriched zones underlain by trivalent LREE enriched zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

hekhino ... Mikhel ben ... Avraham ʿEpshṭain Segal