922 resultados para Order of magnitude
Resumo:
We apply the projected Gross-Pitaevskii equation (PGPE) formalism to the experimental problem of the shift in critical temperature T-c of a harmonically confined Bose gas as reported in Gerbier , Phys. Rev. Lett. 92, 030405 (2004). The PGPE method includes critical fluctuations and we find the results differ from various mean-field theories, and are in best agreement with experimental data. To unequivocally observe beyond mean-field effects, however, the experimental precision must either improve by an order of magnitude, or consider more strongly interacting systems. This is the first application of a classical field method to make quantitative comparison with experiment.
Resumo:
Sedimentation and high turbidity have long been considered a major threat to corals, causing world-wide concern for the health of coral reefs in coastal environments. While studies have demonstrated that sediment conditions characteristic of inshore reefs cause stress in corals, the consequences of such conditions for the physiological status of corals require testing in field situations. Here, I compare the size of energy stores (as lipid content), a proxy for physiological condition, of 2 coral species (Turbinaria mesenterina and Acropora valida) between coastal and offshore environments. Corals on coastal reefs contained 4-fold (T mesenterina) and 2-fold (A. valida) more lipid than conspecifics offshore, despite 1 order of magnitude higher turbidity levels inshore. Results were consistent across 4 sites in each environment. Reproductive investment in A. valida (a seasonal mass spawner) did not vary between environments, suggesting that the larger lipid stores in corals on coastal reefs are mainly somatic energy reserves. These results demonstrate that the environmental conditions on inshore, high-turbidity reefs do not always impact negatively on the physiology of corals. The contrasting lipid levels of T. mesenterina between environments may explain its greater success on coastal reefs.
Resumo:
This article provides a review of the recent theory of transport in nanopores developed in the author's laboratory. In particular the influence of fluid-solid interactions on the transport coefficient is examined, showing that such interactions reduce the value of the coefficient by almost an order of magnitude in comparison to the Knudsen theory for non-interacting systems. The activation energy and potential energy barriers for diffusion in smooth pores with a one-dimensional potential energy profile are also discussed, indicating the inadequacy of the commonly used assumption of proportionality between the activation energy and heat of adsorption or the minimum pore potential energy. A further feature affected by fluid-solid interactions is the nature of the reflection of fluid molecules colliding with a pore wall surface, varying from being nearly specular - such as in carbon nanotubes - to nearly diffuse for amorphous solids. Diffuse reflection leads to momentum loss and reduced transport coefficients. However, fluid-solid interactions do not affect the transport coefficient in the single-file diffusion regime when the surface reflection is diffuse, and the transport coefficient in this case is largely independent of the adsorbed density.
Resumo:
Predator-induced morphological plasticity is a model system for investigating phenotypic plasticity in an ecological context. We investigated the genetic basis of the predator-induced plasticity in Rana lessonae by determining the pattern of genetic covariation of three morphological traits that were found to be induced in a predatory environment. Body size decreased and tail dimensions increased when reared in the presence of preying dragonfly larvae. Genetic variance in body size increased by almost an order of magnitude in the predator environment, and the first genetic principal component was found to be highly significantly different between the two environments. The across environment genetic correlation for body size was significantly below 1 indicating that different genes contributed to this trait in the two environments. Body size may therefore be able to respond to selection independently in the two environments to some extent.
Resumo:
Molecular dynamics simulations of rigid, defect-free single-walled carbon nanotubes have previously suggested that the transport diffusivity of gases adsorbed in these materials can be orders of magnitude higher than any other nanoporous material (A. I. Skoulidas et al., Phys. Rev. Lett. 2002, 89, 185901). These simulations must overestimate the molecular diffusion coefficients because they neglect energy exhange between the diffusing molecules and the nanotube. Recently, Jakobtorweihen et al. have reported careful simulations of molecular self-diffusion that allow nanotube flexibility (Phys. Rev. Lett. 2005, 95, 044501). We have used the efficient thermostat developed by Jakobtorweihen et al. to examine the influence of nanotube flexibility on the transport diffusion of CH4 in (20,0) and (15,0) nanotubes. The inclusion of nanotube flexibility reduces the transport diffusion relative to the rigid nanotube by roughly an order of magnitude close to zero pressure, but at pressures above about I bar the transport diffusivities for flexible and rigid nanotubes are very similar, differing by less than a factor or two on average. Hence, the transport diffusivities are still extremely large compared to other known materials when flexibility is taken into account.
Resumo:
This paper describes effluent flow dynamics within a septic absorption system and the prediction of flow through the biomat and sub-biomat zone. Using soil hydraulic properties in a one dimensional model we demonstrate how soil hydraulic properties interact with biomat resistances to determine long-term acceptance rate (LTAR). The LTAR is a key parameter used in the Australian and New Zealand Standard AS1547:2000 to calculate the area of trench required to ensure trenches are not overloaded. Results show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) collapse to a one order of magnitude variation in LTAR. These results are calculated from a model using basic flow theory, allowing LTAR to be estimated for any combination of biomat resistance and soil hydraulic properties. To increase the reliability of prediction of septic trench hydrology, HYDRUS 2D was used to model two dimensional flow. For more permeable soils, the exfiltration zone above sidewall biomat growth is shown to be a key pathway for excess effluent flow.
Resumo:
[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.
Resumo:
Clay minerals, both natural and synthetic, have a wide range of applications. Smectite clays are not true insulators, their slight conductivity has been utilized by the paper industry in the development of mildly conducting paper. In particular, the synthetic hectorite clay, laponite, is employed to produce paper which is used in automated drawing offices where electro graphic printing is common. The primary objective of this thesis was to modify smectite clays, particularly laponite, to achieve enhanced conductivity. The primary objective was more readily achieved if the subsidiary objective of understanding the mechanism of conductivity was defined. The cyclic voltammograms of some cobalt complexes were studied in free solution and as clay modified electrodes to investigate the origin of electroactivity in clay modified electrodes. The electroactivity of clay modified electrodes prepared using our method can be attributed to ion pairs sorbed to the surface of the electrode, in excess of the cationic exchange capacity. However, some new observations were made concerning the co-ordination chemistry of the tri-2-pyridylamine complexes used which needed clarification. The a.c. conductivity of pressed discs of laponite RD was studied over the frequency range 12Hz- 100kHz using three electrode systems namely silver-loaded epoxy resin (paste), stainless-steel and aluminium. The a. c. conductivity of laponite consists of two components, reactive (minor) and ionic (major) which can be observed almost independently by utilizing the different electrode systems. When the temperature is increased the conductivity of laponite increases and the activation energy for conductivity can be calculated. Measurement of the conductivity of thin films of laponite RD in two crystal planes shows a degree of anisotropy in the a.c. conductivity. Powder X-ray diffraction and 119Sn Mossbauer spectroscopy studies have shown that attempts to intercalate some phenyltin compounds into laponite RD under ambient conditions result in the formation of tin(IV) oxide pillars. 119Sn Mossbauer data indicate that the order of effectiveness of conversion to pillars is in the order: Ph3SnCl > (Ph3Sn)2O, Ph2SnCl2 The organic product of the pillaring process was identified by 13C m.a.s.n.m.r. spectroscopy as trapped in the pillared lattice. This pillaring reaction is much more rapid when carried out in Teflon containers in a simple domestic microwave oven. These pillared clays are novel materials since the pillaring is achieved via neutral precursors rather than sacrificial reaction of the exchangeable cation. The pillaring reaction depends on electrophilic attack on the aryl tin bond by Brønsted acid sites within the clay. Two methods of interlamellar modification were identified which lead to enhanced conductivity of laponite, namely ion exchange and tin(IV) oxide pillaring. A monoionic potassium exchanged laponite shows a four fold increase in a.c. conductivity compared to sodium exchanged laponite RD. The increased conductivity is due to the appearence of an ionic component. The conductivity is independent of relative humidity and increases with temperature. Tin(IV) oxide pillared laponite RD samples show a significant increase in conductivity. Samples prepared from Ph2SnCl2 show an increase in excess of an order of magnitude. The conductivity of tin(IV) oxide pillared laponite samples is dominated by an ionic component.
Resumo:
The concept of shallow fluidized bed boilers is defined and a preliminary working design for a gas-fired package boiler has been produced. Those areas of the design requiring further study have been specified. Experimental investigations concerning these areas have been carried out. A two-dimensional, conducting paper analog has been developed for the specific purpose of evaluating sheet fins. The analog has been generalised and is presented as a simple means of simulating the general, two-dimensional Helmholtz equation. By recording the transient response of spherical, calorimetric probes when plunged into heated air-fluidized beds, heat transfer coefficients have been measured at bed temperatures up to 1 100°C. A correlation fitting all the data to within ±10% has been obtained. A model of heat transfer to surfaces immersed in high temperature beds has been proposed. The model solutions are, however, only in qualitative agreement with the experimental data. A simple experimental investigation has revealed that the effective, radial, thermal conductivities of shallow fluidized beds are an order of magnitude lower than the axial conductivities. These must, consequently, be taken into account when considering heat transfer to surfaces immersed within fluidized beds. Preliminary work on pre-mixed gas combustion and some further qualitative experiments have been used as the basis for discussing the feasibility of combusting heavy fuel oils within shallow beds. The use of binary beds, within which the fuel could be both gasified and subsequently burnt, is proposed. Finally, the consequences of the experimental studies on the initial design are considered, and suggestions for further work are made.
Resumo:
Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.
Resumo:
The present thesis tested the hypothesis of Stanovich, Siegel, & Gottardo (1997) that surface dyslexia is the result of a milder phonological deficit than that seen in phonological dyslexia coupled with reduced reading experience. We found that a group of adults with surface dyslexia showed a phonological deficit that was commensurate with that shown by a group of adults with phonological dyslexia (matched for chronological age and verbal and non-verbal IQ) and normal reading experience. We also showed that surface dyslexia cannot be accounted for by a semantic impairment or a deficit in the verbal learning and recall of lexical-semantic information (such as meaningful words), as both dyslexic subgroups performed the same. This study has replicated the results of our published study that surface dyslexia is not the consequence of a mild retardation or reduced learning opportunities but a separate impairment linked to a deficit in written lexical learning, an ability needed to create novel lexical representations from a series of unrelated visual units, which is independent from the phonological deficit (Romani, Di Betta, Tsouknida & Olson, 2008). This thesis also provided evidence that a selective nonword reading deficit in developmental dyslexia persists beyond poor phonology. This was shown by finding a nonword reading deficit even in the presence of normal regularity effects in the dyslexics (when compared to both reading and spelling-age matched controls). A nonword reading deficit was also found in the surface dyslexics. Crucially, this deficit was as strong as in the phonological dyslexics despite better functioning of the sublexical route for the former. These results suggest that a nonword reading deficit cannot be solely explained by a phonological impairment. We, thus, suggested that nonword reading should also involve another ability relating to the processing of novel visual orthographic strings, which we called 'orthographic coding'. We then investigated the ability to process series of independent units within multi-element visual arrays and its relationship with reading and spelling problems. We identified a deficit in encoding the order of visual sequences (involving both linguistic and nonlinguistic information) which was significantly associated with word and nonword processing. More importantly, we revealed significant contributions to orthographic skills in both dyslexic and control individuals, even after age, performance IQ and phonological skills were controlled. These results suggest that spelling and reading do not only tap phonological skills but also order encoding skills.
Resumo:
Therapeutic proteins are vital to the future of human health provision and the survival and profitability of the global pharmaceutical industry. Returns from protein therapeutics are experiencing unprecedented growth: both their number and their economic dividend have increased by an order of magnitude in the last 10 years. The potential immunogenicity of protein therapeutics raises many clinical and safety concerns. Many poorly understood factors relating to both product and host affect immune responses. Available laboratory measurement of immunogenicity is of little utility for predicting the clinical properties of biotherapeutics. Coupled with assay variability and standardization issues, this precludes adequate prediction of the biological or clinical responses of therapeutic proteins, arguing for the utilization of informatic strategies in the analysis and prediction of protein immunogenicity. Currently, many unresolved issues must be addressed and thus circumvented before effective prediction can become routine.
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the throughput improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). We prove that the per session throughput order with PNC is tightly bounded as T((nvmR (n))-1) if m = O(R-2 (n)), where n is the total number of nodes, R(n) is the communication range, and m is the number of destinations for each multicast session. We also show that per-session throughput order with PNC is tight bounded as T(n-1), when m = O(R-2(n)). The results of this paper imply that PNC cannot improve the throughput order of multicast in random WAHNs, which is different from the intuition that PNC may improve the throughput order as it allows simultaneous signal access and combination.
Resumo:
This article discusses property rights, corporate governance frameworks and privatisation outcomes in the Central–Eastern Europe and Central Asia (CEECA) region. We argue that while CEECA still suffers from deficient ‘higher order’ institutions, this is not attracting sufficient attention from international institutions like EBRD and the World Bank, which focus on ‘lower order’ indicators. We discuss factors that may alleviate the negative impact of the weakness in institutional environment and argue for the pecking order of privatisation, where equivalent privatisation is given a priority but speed is not compromised.