830 resultados para Oort Cloud
Resumo:
This paper presents the Accurate Google Cloud Simulator (AGOCS) – a novel high-fidelity Cloud workload simulator based on parsing real workload traces, which can be conveniently used on a desktop machine for day-to-day research. Our simulation is based on real-world workload traces from a Google Cluster with 12.5K nodes, over a period of a calendar month. The framework is able to reveal very precise and detailed parameters of the executed jobs, tasks and nodes as well as to provide actual resource usage statistics. The system has been implemented in Scala language with focus on parallel execution and an easy-to-extend design concept. The paper presents the detailed structural framework for AGOCS and discusses our main design decisions, whilst also suggesting alternative and possibly performance enhancing future approaches. The framework is available via the Open Source GitHub repository.
Resumo:
Cloud computing offers massive scalability and elasticity required by many scien-tific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.
Resumo:
People with foot problems need special healthcare: foot care. Customized insoles can provide this care. They are inserts that are placed in the shoes. They correct biomechanical and postural inaccuracies in foot. Insole production contains four phases: foot image scanning, image validation, insole design and insole manufacturing. Currently, image scanning and validation is separated in location and time, i.e. podiatrists take images and insole designers validate them at different location and at different time. A cloud-based solution, the CloudSME one-stop shop simulation platform, enables remote access to image validation and insole design service deployed and running on the Cloud. The remote access allows podiatrists validating scanned image while the patient is in their offices. The simulation platform also supports remote design of customized insoles.
Resumo:
PURPOSE: Radiation therapy is used to treat cancer using carefully designed plans that maximize the radiation dose delivered to the target and minimize damage to healthy tissue, with the dose administered over multiple occasions. Creating treatment plans is a laborious process and presents an obstacle to more frequent replanning, which remains an unsolved problem. However, in between new plans being created, the patient's anatomy can change due to multiple factors including reduction in tumor size and loss of weight, which results in poorer patient outcomes. Cloud computing is a newer technology that is slowly being used for medical applications with promising results. The objective of this work was to design and build a system that could analyze a database of previously created treatment plans, which are stored with their associated anatomical information in studies, to find the one with the most similar anatomy to a new patient. The analyses would be performed in parallel on the cloud to decrease the computation time of finding this plan. METHODS: The system used SlicerRT, a radiation therapy toolkit for the open-source platform 3D Slicer, for its tools to perform the similarity analysis algorithm. Amazon Web Services was used for the cloud instances on which the analyses were performed, as well as for storage of the radiation therapy studies and messaging between the instances and a master local computer. A module was built in SlicerRT to provide the user with an interface to direct the system on the cloud, as well as to perform other related tasks. RESULTS: The cloud-based system out-performed previous methods of conducting the similarity analyses in terms of time, as it analyzed 100 studies in approximately 13 minutes, and produced the same similarity values as those methods. It also scaled up to larger numbers of studies to analyze in the database with a small increase in computation time of just over 2 minutes. CONCLUSION: This system successfully analyzes a large database of radiation therapy studies and finds the one that is most similar to a new patient, which represents a potential step forward in achieving feasible adaptive radiation therapy replanning.
Resumo:
Cloud storage has rapidly become a cornerstone of many businesses and has moved from an early adopters stage to an early majority, where we typically see explosive deployments. As companies rush to join the cloud revolution, it has become vital to create the necessary tools that will effectively protect users' data from unauthorized access. Nevertheless, sharing data between multiple users' under the same domain in a secure and efficient way is not trivial. In this paper, we propose Sharing in the Rain – a protocol that allows cloud users' to securely share their data based on predefined policies. The proposed protocol is based on Attribute-Based Encryption (ABE) and allows users' to encrypt data based on certain policies and attributes. Moreover, we use a Key-Policy Attribute-Based technique through which access revocation is optimized. More precisely, we show how to securely and efficiently remove access to a file, for a certain user that is misbehaving or is no longer part of a user group, without having to decrypt and re-encrypt the original data with a new key or a new policy.
Resumo:
Physical location of data in cloud storage is a problem that gains a lot of attention not only from the actual cloud providers but also from the end users' who lately raise many concerns regarding the privacy of their data. It is a common practice that cloud service providers create replicate users' data across multiple physical locations. However, moving data in different countries means that basically the access rights are transferred based on the local laws of the corresponding country. In other words, when a cloud service provider stores users' data in a different country then the transferred data is subject to the data protection laws of the country where the servers are located. In this paper, we propose LocLess, a protocol which is based on a symmetric searchable encryption scheme for protecting users' data from unauthorized access even if the data is transferred to different locations. The idea behind LocLess is that "Once data is placed on the cloud in an unencrypted form or encrypted with a key that is known to the cloud service provider, data privacy becomes an illusion". Hence, the proposed solution is solely based on encrypting data with a key that is only known to the data owner.
Resumo:
Simulating the efficiency of business processes could reveal crucial bottlenecks for manufacturing companies and could lead to significant optimizations resulting in decreased time to market, more efficient resource utilization, and larger profit. While such business optimization software is widely utilized by larger companies, SMEs typically do not have the required expertise and resources to efficiently exploit these advantages. The aim of this work is to explore how simulation software vendors and consultancies can extend their portfolio to SMEs by providing business process optimization based on a cloud computing platform. By executing simulation runs on the cloud, software vendors and associated business consultancies can get access to large computing power and data storage capacity on demand, run large simulation scenarios on behalf of their clients, analyze simulation results, and advise their clients regarding process optimization. The solution is mutually beneficial for both vendor/consultant and the end-user SME. End-user companies will only pay for the service without requiring large upfront costs for software licenses and expensive hardware. Software vendors can extend their business towards the SME market with potentially huge benefits.
Resumo:
How can applications be deployed on the cloud to achieve maximum performance? This question is challenging to address with the availability of a wide variety of cloud Virtual Machines (VMs) with different performance capabilities. The research reported in this paper addresses the above question by proposing a six step benchmarking methodology in which a user provides a set of weights that indicate how important memory, local communication, computation and storage related operations are to an application. The user can either provide a set of four abstract weights or eight fine grain weights based on the knowledge of the application. The weights along with benchmarking data collected from the cloud are used to generate a set of two rankings - one based only on the performance of the VMs and the other takes both performance and costs into account. The rankings are validated on three case study applications using two validation techniques. The case studies on a set of experimental VMs highlight that maximum performance can be achieved by the three top ranked VMs and maximum performance in a cost-effective manner is achieved by at least one of the top three ranked VMs produced by the methodology.
Resumo:
Durch den großen Erfolg des Cloud Computing und der hohen Geschwindigkeit, mit der Cloud-Innovationen seither Einzug in die Praxis finden, eröffnen sich für die Industrie neue Chancen im Wettbewerb. Von besonderer Bedeutung sind die Möglichkeiten, Cloud-gestützte Geschäftsprozesse dynamisch, als direkte Reaktion auf einen Kundenauftrag, anzupassen und auszuführen. Dies gilt insbesondere auch für kooperative und unternehmensübergreifende Anwendungen, welche aus mehreren IT-Diensten verschiedener Partner bestehen. Gegenstand dieses Artikels ist die Vorstellung eines Konzeptes und einer Architektur für eine zentrale Cloud-Plattform zur Konfiguration, Ausführung und Überwachung von kollaborativen Logistik-Prozessen. Auf dieser Plattform können Geschäftsprozesse modelliert und in ihren Privacy-Eigenschaften parametrisiert werden. Die einzelnen Prozesselemente werden dabei mit IT-Diensten verknüpft, die beispielsweise auf externen Cloud-Plattformen ausgeführt werden. Ein Schwerpunkt der Veröffentlichung liegt in der Betrachtung der Erstellung, Umsetzung und Überwachung von Privacy-Anforderungen.
Resumo:
Il lavoro sviluppato deriva dalla creazione, in sede di tirocinio, di un piccolo database, creato a partire dalla ricerca dei dati fino alla scelta di informazioni di rilievo e alla loro conseguente archiviazione. L’obiettivo dell’elaborato è rappresentato dalla volontà di ampliare quella conoscenza basilare posseduta sul mondo dell’informazione dal punto di vista gestionale. Infatti, considerando lo scenario odierno, si può affermare che lo studio del cliente attraverso delle informazioni rilevanti, di vario tipo, è una delle conoscenze fondamentali nel mondo dell’ingegneria gestionale. Il metodo di studio utilizzato è basato sulla comprensione delle diverse tipologie di dati presenti nel mondo aziendale e, di conseguenza, al loro legame con il mondo del web e soprattutto con i metodi di archiviazione più moderni e più utilizzati oggi sia dalle aziende, che non dai privati stessi; le piattaforme cloud. L’elaborato si suddivide in tre argomenti differenti ma strettamente collegati tra loro; la prima parte tratta di come l’informazione più basilare vada raccolta ed analizzata, la sezione centrale è legata al tema chiave dell’internet come mezzo di archiviazione e non più solo come piattaforma di ricerca del dato, mentre nel capitolo finale viene chiarito il concetto di cloud computing, comodo veloce ed efficiente, considerato da qualche anno il punto d’incontro fra i primi due argomenti. Nello specifico si andranno a presentare alcuni di applicazione reale del cloud da parte di aziende come Amazon, Google e Facebook, multinazionali che ad oggi sono riuscite a fare dell’archiviazione e della manipolazione dei dati, a scopi industriali, una delle loro fonti di guadagno. Il risultato è rappresentato da una panoramica sul funzionamento e sulle tecniche di utilizzo dell’informazione, partendo dal dato più irrilevante fino ad arrivare ai database condivisi utilizzati, se non addirittura controllati, dalle più rinomate aziende nazionali ed internazionali.
Resumo:
Individuals and corporate users are persistently considering cloud adoption due to its significant benefits compared to traditional computing environments. The data and applications in the cloud are stored in an environment that is separated, managed and maintained externally to the organisation. Therefore, it is essential for cloud providers to demonstrate and implement adequate security practices to protect the data and processes put under their stewardship. Security transparency in the cloud is likely to become the core theme that underpins the systematic disclosure of security designs and practices that enhance customer confidence in using cloud service and deployment models. In this paper, we present a framework that enables a detailed analysis of security transparency for cloud based systems. In particular, we consider security transparency from three different levels of abstraction, i.e., conceptual, organisation and technical levels, and identify the relevant concepts within these levels. This allows us to provide an elaboration of the essential concepts at the core of transparency and analyse the means for implementing them from a technical perspective. Finally, an example from a real world migration context is given to provide a solid discussion on the applicability of the proposed framework.
Resumo:
This paper deals with the combination of OSGi and cloud computing. Both technologies are mainly placed in the field of distributed computing. Therefore, it is discussed how different approaches from different institutions work. In addition, the approaches are compared to each other.
Resumo:
Provenance plays a pivotal in tracing the origin of something and determining how and why something had occurred. With the emergence of the cloud and the benefits it encompasses, there has been a rapid proliferation of services being adopted by commercial and government sectors. However, trust and security concerns for such services are on an unprecedented scale. Currently, these services expose very little internal working to their customers; this can cause accountability and compliance issues especially in the event of a fault or error, customers and providers are left to point finger at each other. Provenance-based traceability provides a mean to address part of this problem by being able to capture and query events occurred in the past to understand how and why it took place. However, due to the complexity of the cloud infrastructure, the current provenance models lack the expressibility required to describe the inner-working of a cloud service. For a complete solution, a provenance-aware policy language is also required for operators and users to define policies for compliance purpose. The current policy standards do not cater for such requirement. To address these issues, in this paper we propose a provenance (traceability) model cProv, and a provenance-aware policy language (cProvl) to capture traceability data, and express policies for validating against the model. For implementation, we have extended the XACML3.0 architecture to support provenance, and provided a translator that converts cProvl policy and request into XACML type.
Resumo:
We present Dithen, a novel computation-as-a-service (CaaS) cloud platform specifically tailored to the parallel ex-ecution of large-scale multimedia tasks. Dithen handles the upload/download of both multimedia data and executable items, the assignment of compute units to multimedia workloads, and the reactive control of the available compute units to minimize the cloud infrastructure cost under deadline-abiding execution. Dithen combines three key properties: (i) the reactive assignment of individual multimedia tasks to available computing units according to availability and predetermined time-to-completion constraints; (ii) optimal resource estimation based on Kalman-filter estimates; (iii) the use of additive increase multiplicative decrease (AIMD) algorithms (famous for being the resource management in the transport control protocol) for the control of the number of units servicing workloads. The deployment of Dithen over Amazon EC2 spot instances is shown to be capable of processing more than 80,000 video transcoding, face detection and image processing tasks (equivalent to the processing of more than 116 GB of compressed data) for less than $1 in billing cost from EC2. Moreover, the proposed AIMD-based control mechanism, in conjunction with the Kalman estimates, is shown to provide for more than 27% reduction in EC2 spot instance cost against methods based on reactive resource estimation. Finally, Dithen is shown to offer a 38% to 500% reduction of the billing cost against the current state-of-the-art in CaaS platforms on Amazon EC2 (Amazon Lambda and Amazon Autoscale). A baseline version of Dithen is currently available at dithen.com.