995 resultados para Oil extraction
Resumo:
This aim of this work was to compare two methods for copper determination in insulating oils from power transformers by GFAAS. The first method was extraction induced by emulsion breaking, which determined the preconcentration of copper in an aqueous solution and exhibited a limit of quantification of 0.27 µg L-1. Also, a second method based on the direct introduction of samples into GFAAS in the form of detergent emulsions, prepared with Triton X-114 and HNO3, was investigated. In this case, the limit of quantification was 1.7 µg L-1. Seven samples of used oils were successfully analyzed by both methods.
Resumo:
A new analytical approach was developed involving cloud point extraction (CPE) and spectrofluorimetric determination of triamterene (TM) in biological fluids. A urine or plasma sample was prepared and adjusted to pH 7, then TM was quickly extracted using CPE, using 0.05% (w/v) of Triton X-114 as the extractant. The main factors that affected the extraction efficiency (the pH of the sample, the Triton X-114 concentration, the addition of salt, the extraction time and temperature, and the centrifugation time and speed) were studied and optimized. The method gave calibration curves for TM with good linearities and correlation coefficients (r) higher than 0.99. The method showed good precision and accuracy, with intra- and inter-assay precisions of less than 8.50% at all concentrations. Standard addition recovery tests were carried out, and the recoveries ranged from 94.7% to 114%. The limits of detection and quantification were 3.90 and 11.7 µg L-1, respectively, for urine and 5.80 and 18.0 µg L-1, respectively, for plasma. The newly developed, environmentally friendly method was successfully used to extract and determine TM in human urine samples.
Resumo:
Tapirira guianensis (Anacardiaceae) is used in traditional medicine and is important for the recovery of degraded areas and riparian forests because the T. guianensis fruits are highly consumed by wildlife. Volatile components from dried leaves and branches of five individual plants of T. guianensis were collected in two sandbank forests of the State of Pará (Extractive Reserve Maracanã and Area of Environmental Protection Algodoal/Maiandeua), extracted by hydrodistillation using a Clevenger-type apparatus, and analyzed by GC/MS. The ten oils obtained are comprised mostly of sesquiterpene hydrocarbons (58.49 to 100%), with (E)-caryophyllene, β-selinene, α-selinene, β-sesquiphellandrene, and α-zingiberene being the most prominent. The results of the oil compositions were processed by Hierarchical Component Analysis (HCA) allowing the establishment of three groups of essential oils for T. guianensis differentiated by the content of β-selinene/α-selinene (Type I), (E)-caryophyllene (Type II), and β-sesquiphellandrene/α-zingiberene (Type III).
Resumo:
In this study, a procedure is developed for cloud point extraction of Pd(II) and Rh(III) ions in aqueous solution using Span 80 (non-ionic surfactant) prior to their determination by flame atomic absorption spectroscopy. This method is based on the extraction of Pd(II) and Rh(III) ions at a pH of 10 using Span 80 with no chelating agent. We investigated the effect of various parameters on the recovery of the analyte ions, including pH, equilibration temperature and time, concentration of Span 80, and ionic strength. Under the best experimental conditions, the limits of detection based on 3Sb for Pd(II) and Rh(III) ions were 1.3 and 1.2 ng mL-1, respectively. Seven replicate determinations of a mixture of 0.5 µg mL-1 palladium and rhodium ions gave a mean absorbance of 0.058 and 0.053 with relative standard deviations of 1.8 and 1.6%, respectively. The developed method was successfully applied to the extraction and determination of the palladium and rhodium ions in road dust and standard samples and satisfactory results were obtained.
Resumo:
In the present work, a simple and rapid ligand-less, in situ, surfactant-based solid phase extraction for the preconcentration of copper in water samples was developed. In this method, a cationic surfactant (n-dodecyltrimethylammonium bromide) was dissolved in an aqueous sample followed by the addition of an appropriate ion-pairing agent (ClO4-). Due to the interaction between the surfactant and ion-pairing agent, solid particles were formed and subsequently used for the adsorption of Cu(OH)2 and CuI. After centrifugation, the sediment was dissolved in 1.0 mL of 1 mol L-1 HNO3 in ethanol and aspirated directly into the flame atomic absorption spectrometer. In order to obtain the optimum conditions, several parameters affecting the performance of the LL-ISS-SPE, including the volumes of DTAB, KClO4, and KI, pH, and potentially interfering ions, were optimized. It was found that KI and phosphate buffer solution (pH = 9) could extract more than 95% of copper ions. The amount of copper ions in the water samples varied from 3.2 to 4.8 ng mL-1, with relative standard deviations of 98.5%-103%. The determination of copper in water samples was linear over a concentration range of 0.5-200.0 ng mL-1. The limit of detection (3Sb/m) was 0.1 ng mL-1 with an enrichment factor of 38.7. The accuracy of the developed method was verified by the determination of copper in two certified reference materials, producing satisfactory results.
Resumo:
This paper describes the optimization of a multiresidue chromatographic analysis for the identification and quantification of 20 pesticides in bovine milk, including three carbamates, a carbamate oxime, six organophosphates, two strobilurins, a pyrethroid, an oxazolidinedione, an aryloxyphenoxypropionate acid/ester, a neonicotinoid, a dicarboximide, and three triazoles. The influences of different chromatographic columns and gradients were evaluated. Furthermore, four different extraction methods were evaluated; each utilized both different solvents, including ethyl acetate, methanol, and acetonitrile, and different workup steps. The best results were obtained by a modified QuEChERS method that lacked a workup step, and that included freezing the sample for 2 hours at -20 ºC. The results were satisfactory, yielding coefficients of variation of less than 20%, with the exception of the 50 µg L-1 sample of famoxadone, and recoveries between 70 and 120%, with the exception of acephate and bifenthrin; however, both analytes exhibited coefficients of variation of less than 20%.
Resumo:
The objective of this study was to evaluate the relationships between the spectra in the Vis-NIR range and the soil P concentrations obtained from the PM and Prem extraction methods as well as the effects of these relationships on the construction of models predicting P concentration in Oxisols. Soil samples' spectra and their PM and Prem extraction solutions were determined for the Vis-NIR region between 400 and 2500 nm. Mineralogy and/or organic matter content act as primary attributes allowing correlation of these soil phosphorus fractions with the spectra, mainly at wavelengths between 450-550, 900-1100 nm, near 1400 nm and between 2200-2300 nm. However, the regression models generated were not suitable for quantitative phosphate analysis. Solubilization of organic matter and reactions during the PM extraction process hindered correlations between the spectra and these P soil fractions. For Prem,, the presence of Ca in the extractant and preferential adsorption by gibbsite and iron oxides, particularly goethite, obscured correlations with the spectra.
Resumo:
In this study, the percentage content of free steroid in oils, fats and biodiesel was analyzed. For this, the saponification reaction on a microscale was used, and this procedure for extraction of unsaponifiable fraction was studied in several experimental steps. After the process of saponification, the unsaponifiable fraction was analyzed by gas chromatography with flame ionization detector, where all steroids present in each oil, fat and biodiesel were identified and their contents determined and compared to their respective biodiesel. A reduction in unsaponifiable fraction of each oil and fat and its biodiesel was noted, as well as a reduction in the content of free steroids. The results showed that, compared to the sedimentation problem of steroids in biodiesel, some raw materials, such as chicken fat and babassu oil may be promising because they have low content and high reduction percentages of steroids when converted to biodiesel.
Resumo:
AbstractThe purpose of this study was to evaluate the best operating conditions of ICP OES for the determination of Na, Ca, Mg, Sr and Fe in aqueous extract of crude oil obtained after hot extraction with organic solvents (ASTM D 6470-99 modified). Thus, the full factorial design and central composite design were used to optimize the best conditions for the flow of nebulization gas, the flow of auxiliary gas, and radio frequency power. After optimization of variables, a study to obtain correct classification of the 18 samples of aqueous extract of crude oils (E1 to E18) from three production and refining fields was carried out. Exploratory analysis of these extracts was performed by principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA), using the original variables as the concentration of the metals Na, Ca, Mg, Sr and Fe determined by ICP OES.
Resumo:
The chemical composition of the essential oil and hydrolates of Campomanesia viatoris Landrum were investigated by gas chromatography/mass spectrometry (GC/MS) and a GC flame ionization detector (GC-FID). The major constituents were tasmanone (70.50, essential oil; 74.73%, hydrolate), flavesone (12.77, essential oil; 12.24%, hydrolate) and agglomerone (6.79, essential oil; 10.84%, hydrolate). Tasmonone was isolated and its structure was characterized by spectrometric analysis, specifically 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS). These findings supports the quimiotaxonomic relationship with Campomanesia and Eucalyptus genera.
Resumo:
Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study, asphaltene (sub)fractions were extracted from an asphaltic residue (AR02), characterized by NMR, elemental analysis, X-ray fluorescence and MS-TOF, and compared to asphaltene subfractions obtained from another asphaltic residue (AR01) described in a previous article. The (sub)fractions obtained from the two residues were used to prepare model-systems containing 1 wt% of asphaltenes in toluene and their phase behavior was evaluated by measuring asphaltene precipitation onset using optical microscopy. The results obtained indicated minor differences between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN), presence and content of heteroelements and average molar mass. Regarding stability, minor differences in molecule polarity appear to promote major differences in the phase behavior of each of the asphaltene fractions isolated.
Resumo:
The essential oil extracted from mustard (Brassica rapa) seeds was evaluated for its effect on suppression of Rhizoctonia solani growth in vitro, and in field soils, for reducing saprophytic substrate colonization and seedling damping off and blight using snap beans as indicator plant, the in vitro growth was completely inhibited at a concentration of 50 mul/l. The saprophytic substrate colonization in soils 24 h after treatment was drastically reduced to 45% at 150 mul/kg soil concentration, in contrast to 100% colonization at concentrations of 0, 50, or 75 mul/kg. This recovery rate gradually declined to 6% and 60%, respectively, in nine days. A control of pre and post-emergence seedling damping off and blight in common beans (Phaseolus vulgaris), without any apparent phytotoxic effect was achieved by irrigating R. solani infested soils with water containing the emulsified essential oil to provide 150 mul/l soil volume ten days prior to planting, gave over 95%. The effect of the mustard essential oil was not influenced by the physical soil texture, and it appears to be a good substitute for methyl bromide fumigation in nurseries for seedling production.
Resumo:
The study was done to identify the most active fungitoxic component of cinnamon bark (Cinnamomum zeylanicum) oil that can be used as a marker for standardization of cinnamon extract or oil based natural preservative of stored seeds. Aspergillus flavus and A. ruber were used as test fungi. The hexane extracted crude oil and the hydro-distilled essential oil from cinnamon bark had complete growth inhibition concentration (CGIC) of 300 and 100 µl/l, respectively. Both oils produced three fractions on preparative thin layer silica-gel chromatography plates. The fraction-2 of either oil was the largest and most active, with CGIC of 200 µl/l, but the fungitoxicity was also retained in the other two fractions. The fraction-1 and 3 of the crude oil reduced growth of both the fungal species by 65%, and those of distilled oil by 45% at 200 µl/l. The CGIC of these fractions from both the sources was above 500 µl/l. The gas chromatography and mass spectrometry (GC-MS) of the fraction-2 of the hexane extract revealed that it contained 61% cinnamaldehyde, 29% cinnamic acid, and two minor unidentified compounds in the proportion of 4% and 6%. The GC-MS of the fraction-2 of the distilled oil revealed that it contained 99.1% cinnamaldehyde and 0.9% of an unidentified compound. The CGIC of synthetic cinnamaldehyde was 300 µl/l and that of cinnamic acid above 500 µl/l. The 1:1 mixture of cinnamaldehyde and cinnamic acid had CGIC of 500 µl/l. The data revealed that cinnamaldehyde was the major fungitoxic component of hexane extract and the distilled essential oil of cinnamon bark, while other components have additive or synergistic effects on total fungitoxicity. It is suggested that the natural seed preservative based on cinnamon oil can be standardized against cinnamaldehyde.