998 resultados para OVEREXPRESSING MICE
Resumo:
Stress can cause damage and atrophy of neurons in the hippocampus by deregulating the expression of neurotrophic factors that promote neuronal plasticity. The endocannabinoid system represents a physiological substrate involved in neuroprotection at both cellular and emotional levels. The lack of CB1 receptor alters neuronal plasticity and originates an anxiety-like phenotype in mice. In the present study, CB1 knockout mice exhibited an augmented response to stress revealed by the increased despair behavior and corticosterone levels showed in the tail suspension test and decreased brain derived neurotrophic factor (BDNF) levels in the hippocampus. Interestingly, local administration of BDNF in the hippocampus reversed the increased despair behavior of CB1 knockout mice, confirming the crucial role played by BDNF on the emotional impairment of these mutants. The neurotrophic deficiency seems to be specific for BDNF since no differences were found in the levels of NGF and NT-3, two additional neurotrophic factors. Moreover, BDNF impairment is not related to the activity of its specific receptor TrkB or the activity of the transcription factor CREB. These results suggest that the lack of CB1 receptor originates an enhanced response to stress and neuronal plasticity by decreasing BDNF levels in the hippocampus that lead to impairment in the responses to emotional disturbances.
Resumo:
The involvement of μ-opioid receptors in different behavioral responses elicited by nicotine was explored by using μ-opioid receptor knock-out mice. The acute antinociceptive responses induced by nicotine in the tail-immersion and hot-plate tests were reduced in the mutant mice, whereas no difference between genotypes was observed in the locomotor responses. The rewarding effects induced by nicotine were then investigated using the conditioning place-preference paradigm. Nicotine produced rewarding responses in wild-type mice but failed to produce place preference in knock-out mice, indicating the inability of this drug to induce rewarding effects in the absence of μ-opioid receptors. Finally, the somatic expression of the nicotine withdrawal syndrome, precipitated in dependent mice by the injection of mecamylamine, was evaluated. Nicotine withdrawal was significantly attenuated in knock-out mutants when compared with wild-type mice. In summary, the present results show that μ-opioid receptors are involved in the rewarding responses induced by nicotine and participate in its antinociceptive responses and the expression of nicotine physical dependence.
Resumo:
The involvement of dynorphin on Delta-9-tetrahydrocannabinol (THC) and morphine responses has been investigated by using mice with a targeted inactivation of the prodynorphin (Pdyn) gene. Dynorphin-deficient mice show specific changes in the behavioral effects of THC, including a reduction of spinal THC analgesia and the absence of THC-induced conditioned place aversion. In contrast, acute and chronic opioid effects were normal. The lack of negative motivational effects of THC in the absence of dynorphin demonstrates that this endogenous opioid peptide mediates the dysphoric effects of marijuana.
Resumo:
The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.
Resumo:
The functional interactions between the endogenous cannabinoid and opioid systems were evaluated in pre-proenkephalin-deficient mice. Antinociception induced in the tail-immersion test by acute Delta9-tetrahydrocannabinol was reduced in mutant mice, whereas no difference between genotypes was observed in the effects induced on body temperature, locomotion, or ring catalepsy. During a chronic treatment with Delta9-tetrahydrocannabinol, the development of tolerance to the analgesic responses induced by this compound was slower in mice lacking enkephalin. In addition, cannabinoid withdrawal syndrome, precipitated in Delta9-tetrahydrocannabinol-dependent mice by the injection of SR141716A, was significantly attenuated in mutant mice. These results indicate that the endogenous enkephalinergic system is involved in the antinociceptive responses of Delta9-tetrahydrocannabinol and participates in the expression of cannabinoid abstinence.
Resumo:
Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.
Resumo:
Previous pharmacological studies have indicated the possible existence of functional interactions between μ-, δ- and κ-opioid receptors in the CNS. We have investigated this issue using a genetic approach. Here we describe in vitro and in vivo functional activity of δ- and κ-opioid receptors in mice lacking the μ-opioid receptor (MOR). Measurements of agonist-induced [35S]GTPγS binding and adenylyl cyclase inhibition showed that functional coupling of δ- and κ-receptors to G-proteins is preserved in the brain of mutant mice. In the mouse vas deferens bioassay, deltorphin II and cyclic[d-penicillamine2,d-penicillamine5] enkephalin exhibited similar potency to inhibit smooth muscle contraction in both wild-type and MOR −/− mice. δ-Analgesia induced by deltorphin II was slightly diminished in mutant mice, when the tail flick test was used. Deltorphin II strongly reduced the respiratory frequency in wild-type mice but not in MOR −/− mice. Analgesic and respiratory responses produced by the selective κ-agonist U-50,488H were unchanged in MOR-deficient mice. In conclusion, the preservation of δ- and κ-receptor signaling properties in mice lacking μ-receptors provides no evidence for opioid receptor cross-talk at the cellular level. Intact antinociceptive and respiratory responses to the κ-agonist further suggest that the κ-receptor mainly acts independently from the μ-receptor in vivo. Reduced δ-analgesia and the absence of δ-respiratory depression in MOR-deficient mice together indicate that functional interactions may take place between μ-receptors and central δ-receptors in specific neuronal pathways.
Resumo:
GLUT2 expression is reduced in the pancreatic beta-cells of several diabetic animals. The transcriptional control of the gene in beta-cells involves at least two islet-specific DNA-binding proteins, GTIIa and PDX-1, which also transactivates the insulin, somatostatin and glucokinase genes. In this report, we assessed the DNA-binding activities of GTIIa and PDX-1 to their respective cis-elements of the GLUT2 promoter using nuclear extracts prepared from pancreatic islets of 12 week old db/db diabetic mice. We show that the decreased GLUT2 mRNA expression correlates with a decrease of the GTIIa DNA-binding activity, whereas the PDX-1 binding activity is increased. In these diabetic animals, insulin mRNA expression remains normal. The adjunction of dexamethasone to isolated pancreatic islets, a treatment previously shown to decrease PDX-1 expression in the insulin-secreting HIT-T15 cells, has no effect on the GTIIa and PDX-1 DNA-binding activities. These data suggest that the decreased activity of GTIIa, in contrast to PDX-1, may be a major initial step in the development of the beta-cell dysfunction in this model of diabetes.
Resumo:
Confronting a recently mated female with a strange male can induce a pregnancy block ('Bruce effect'). The physiology of this effect is well studied, but its functional significance is still not fully understood. The 'anticipated infanticide hypothesis' suggests that the pregnancy block serves to avoid the cost of embryogenesis and giving birth to offspring that are likely to be killed by a new territory holder. Some 'compatible-genes sexual selection hypotheses' suggest that the likelihood of a pregnancy block is also dependent on the female's perception of the stud's and the stimulus male's genetic quality. We used two inbred strains of mice (C57BL/6 and BALB/c) to test all possible combinations of female strain, stud strain, and stimulus strain under experimental conditions (N(total) = 241 mated females). As predicted from previous studies, we found increased rates of pregnancy blocks if stud and stimulus strains differed, and we found evidence for hybrid vigour in offspring of between-strain mating. Despite the observed heterosis, pregnancies of within-strain matings were not more likely to be blocked than pregnancies of between-strain matings. A power analysis revealed that if we missed an existing effect (type-II error), the effect must be very small. If a female gave birth, the number and weight of newborns were not significantly influenced by the stimulus males. In conclusion, we found no support for the 'compatible-genes sexual selection hypotheses'.
Resumo:
3, 4-Methylenedioxymethamphetamine (MDMA) and cannabis are widely abused illicit drugs that are frequently consumed in combination. Interactions between these two drugs have been reported in several pharmacological responses observed in animals, such as body temperature, anxiety, cognition and reward. However, the interaction between MDMA and cannabis in addictive processes such as physical dependence has not been elucidated yet. In this study, the effects of acute and chronic MDMA were evaluated on the behavioral manifestations of Δ9-tetrahydrocannabinol (THC) abstinence in mice. THC withdrawal syndrome was precipitated by injecting the cannabinoid antagonist rimonabant (10 mg/kg, i.p.) in mice chronically treated with THC, and receiving MDMA (2.5, 5 and 10 mg/kg i.p.) or saline just before the withdrawal induction or chronically after the THC administration. Both, chronic and acute MDMA decreased in a dose-dependent manner the severity of THC withdrawal. In vivo microdialysis experiments showed that acute MDMA (5 mg/kg, i.p.) administration increased extracellular serotonin levels in the prefrontal cortex, but not dopamine levels in the nucleus accumbens. Our results also indicate that the attenuation of THC abstinence symptoms was not due to a direct interaction between rimonabant and MDMA nor to the result of the locomotor stimulating effects of MDMA. The modulation of the cannabinoid withdrawal syndrome by acute or chronic MDMA suggests a possible mechanism to explain the associated consumption of these two drugs in humans.
Resumo:
MyD88 has a modular organization, an N-terminal death domain (DD) related to the cytoplasmic signaling domains found in many members of the tumor necrosis factor receptor (TNF-R) superfamily, and a C-terminal Toll domain similar to that found in the expanding family of Toll/interleukin-1-like receptors (IL-1R). This dual domain structure, together with the following observations, supports a role for MyD88 as an adapter in IL-1 signal transduction; MyD88 forms homodimers in vivo through DD-DD and Toll-Toll interactions. Overexpression of MyD88 induces activation of the c-Jun N-terminal kinase (JNK) and the transcription factor NF-kappaB through its DD. A point mutation in MyD88, MyD88-lpr (F56N), which prevents dimerization of the DD, also blocks induction of these activities. MyD88-induced NF-kappaB activation is inhibited by the dominant negative versions of TRAF6 and IRAK, which also inhibit IL-1-induced NF-kappaB activation. Overexpression of MyD88-lpr or MyD88-Toll (expressing only the Toll domain) acted to inhibit IL-1-induced NF-kappaB and JNK activation in a 293 cell line overexpressing the IL-1RI. MyD88 coimmunoprecipitates with the IL-1R signaling complex in an IL-1-dependent manner.
Resumo:
The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg ×4) were pretreated with THC (3 mg/kg ×4) at room (21°C) and at warm (26°C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB1 receptor antagonist AM251 and the CB2 receptor antagonist AM630, as well as in CB1, CB2 and CB1/CB2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB1 receptor antagonist AM251, neither in CB1 and CB1/CB2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB2 cannabinoid antagonist and in CB2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB1 receptor, although CB2 receptors may also contribute to attenuate neuroinflammation in this process.
Resumo:
BACKGROUND: In chronic kidney disease (CKD) patients, the intake of calcium-based phosphate binders is associated with a marked progression of coronary artery and aortic calcification, in contrast to patients receiving calcium-free phosphate binders. The aim of this study was to reexamine the role of calcium carbonate in vascular calcification and to analyse its effect on aortic calcification-related gene expression in chronic renal failure (CRF). METHODS: Mice deficient in apolipoprotein E underwent either sham operation or subtotal nephrectomy to create CRF. They were then randomly assigned to one of the three following groups: a control non-CRF group and a CRF group fed on standard diet, and a CRF group fed on calcium carbonate enriched diet, for a period of 8 weeks. Aortic atherosclerotic plaque and calcification were evaluated using quantitative morphologic image processing. Aortic gene and protein expression was examined using immunohistochemistry and Q-PCR methods. RESULTS: Calcium carbonate supplementation was effective in decreasing serum phosphorus but was associated with a higher serum calcium concentration. Compared with standard diet, calcium carbonate enriched diet unexpectedly induced a significant decrease of both plaque (p<0.05) and non-plaque-associated calcification surface (p<0.05) in CRF mice. It also increased osteopontin (OPN) protein expression in atherosclerotic lesion areas of aortic root. There was also a numerical increase in OPN and osteoprotegerin gene expression in total thoracic aorta but the difference did not reach the level of significance. Finally, calcium carbonate did not change the severity of atherosclerotic lesions. CONCLUSION: In this experimental model of CRF, calcium carbonate supplementation did not accelerate but instead decreased vascular calcification. If our observation can be extrapolated to humans, it appears to question the contention that calcium carbonate supplementation, at least when given in moderate amounts, necessarily enhances vascular calcification. It is also compatible with the hypothesis of a preponderant role of phosphorus over that of calcium in promoting vascular calcification in CRF.
Resumo:
Background: The transcription factor NFAT5/TonEBP regulates the response of mammalian cells to hypertonicity. However, little is known about the physiopathologic tonicity thresholds that trigger its transcriptional activity in primary cells. Wilkins et al. recently developed a transgenic mouse carrying a luciferase reporter (9xNFAT-Luc) driven by a cluster of NFAT sites, that was activated by calcineurin-dependent NFATc proteins. Since the NFAT site of this reporter was very similar to an optimal NFAT5 site, we tested whether this reporter could detect the activation of NFAT5 in transgenic cells.Results: The 9xNFAT-Luc reporter was activated by hypertonicity in an NFAT5-dependent manner in different types of non-transformed transgenic cells: lymphocytes, macrophages and fibroblasts. Activation of this reporter by the phorbol ester PMA plus ionomycin was independent of NFAT5 and mediated by NFATc proteins. Transcriptional activation of NFAT5 in T lymphocytes was detected at hypertonic conditions of 360–380 mOsm/kg (isotonic conditions being 300 mOsm/kg) and strongly induced at 400 mOsm/kg. Such levels have been recorded in plasma in patients with osmoregulatory disorders and in mice deficient in aquaporins and vasopressin receptor. The hypertonicity threshold required to activate NFAT5 was higher in bone marrow-derived macrophages (430 mOsm/kg) and embryonic fibroblasts (480 mOsm/kg). Activation of the 9xNFAT-Luc reporter by hypertonicity in lymphocytes was insensitive to the ERK inhibitor PD98059, partially inhibited by the PI3-kinase inhibitor wortmannin (0.5 μM) and the PKA inhibitor H89, and substantially downregulated by p38 inhibitors (SB203580 and SB202190) and by inhibition of PI3-kinase-related kinases with 25 μM LY294002. Sensitivity of the reporter to FK506 varied among cell types and was greater in primary T cells than in fibroblasts and macrophages.Conclusion: Our results indicate that NFAT5 is a sensitive responder to pathologic increases in extracellular tonicity in T lymphocytes. Activation of NFAT5 by hypertonicity in lymphocytes was mediated by a combination of signaling pathways that differed from those required in other cell types. We propose that the 9xNFAT-Luc transgenic mouse model might be useful to study the physiopathological regulation of both NFAT5 and NFATc factors in primary cells.
Resumo:
Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.