981 resultados para ORGANOMETALLIC CATALYSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The silver-catalysed oxidation of ethylene has been examined on the (III) face of a single crystal by a combination of electron spectroscopy and kinetic measurements at pressures of up to 50 Torr. The necessary and sufficient conditions for ethylene oxide formation are established, reaction intermediates are identified, kinetic isotope effects are observed and the role of Cs in modifying reaction selectivity is examined. It is shown that surface alkali exhibits opposite effects on the reactions which lead to the further oxidation of ethylene oxide and on the direct combustion of ethylene. © 1984.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured ZnO materials are of great significance for their potential applications in photoelectronic devices, light-emitting displays, catalysis and gas sensors. In this paper, we report a new method to produce large area periodical bowl-like micropatterns of single crystal ZnO through aqueous-phase epitaxial growth on a ZnO single crystal substrate. A self-assembled monolayer of polystyrene microspheres was used as a template to confine the epitaxial growth of single crystal ZnO from the substrate, while the growth morphology was well controlled by citrate anions. Moreover, it was found that the self-assembled monolayer of colloidal spheres plays an important role in reduction of the defect density in the epitaxial ZnO layer. Though the mechanism is still open for further investigation, the present result indicates a new route to suppress the dislocations in the fabrication of single crystal ZnO film. A predicable application of this new method is for the fabrication of two-dimensional photonic crystal structures on light emitting diode surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High temperature chemical non-equilibrium phenomena have a great effect on the flow field around a reentry vehicle. A set of three dimensional Navier-Stokes equations have been solved by implicit finite volume NND scheme. Both ideal gas viscous flow and chemical non-equilibrium flow are calculated for a spherical-cone at a small angle of attack. The results of the two flows have been compared and the effect of chemical non-equilibrium has been analyzed. The effect of wall material's properties, such as catalysis and radiation were studied. The results are in good agreement with the referenced paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the research that it is summarized in the present memory, the activation of enals via iminium ion catalysis in different transformations has been studied. Firstly, a 1,3-dipolar cycloaddition between stable azomethine ylides and a,b-unsaturated aldehydes catalyzed by a chiral imidazolidinone derivative has been optimized. Employing this methodology we have synthesized a large range of densely substituted pyrroloisoquinolines and pyrrolophthalazines with good yields and high values of diastereo- and enantioselectivity. Moreover, a mechanistic study has been carried out based on DFT calculations and experimental data which have allowed us to propose that the (3+2) cycloaddition reaction follows a sequential Michael addition/Mannich cyclization pathway. The formation of the iminium ion as a result of the condensation between the a,b-unsaturated aldehyde and the catalyst plays an essential role, regarding both reactivity and stereoselectivity. On the other hand we have developed a methodology to carry out a cascade Michael/Henry reaction followed by a sequential dehydration. Starting from simple substrates (2-nitromethylacrilates and a,b-unsaturated aldehydes) and employing a prolinol-derivative catalyst a series of quiral nitrocyclohexadienes have been synthesized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he 1,3-dipolar cycloaddition between glycine-derived azlactones with maleimides is efficiently catalyzed by the dimeric chiral complex [(S-a)-Binap.AuTFA](2). The alanine-derived oxazolone only reacts with tert-butyl acrylate giving anomalous regiochemistry, which is explained and supported by Natural Resonance Theory and Nucleus Independent Chemical Shifts calculations. The origin of the high enantiodiscrimination observed with maleimides and tert-butyl acrylate is analyzed using DFT computed at M06/Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF) level. Several applications of these cycloadducts in the synthesis of new proline derivatives with a 2,5-trans-arrangement and in the preparation of complex fused polycyclic molecules are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-chain polymeric nanoparticles are artificial folded soft nano-objects of ultra-small size which have recently gained prominence in nanoscience and nanotechnology due to their exceptional and sometimes unique properties. This review focuses on the current state of the investigations of click chemistry techniques for highly-efficient single-chain nanoparticle construction. Additionally, recent progress achieved for the use of well-defined single-chain nanoparticles in some promising fields, such as nanomedicine and catalysis, is highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

302 p. : gráf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在高超声速飞行条件下,流入冲压发动机燃烧室并降至低速的空气的温度随飞行马赫数增加而愈来愈高。燃料与高温空气混合燃烧释放的化学能中的一部分将转化为解离能。这些解离能在长度受限的尾喷管中难以充分复合形成推力,使冲压发动机推力在高超声速范围内随飞行马赫数增大而下降,难以满足高超声速飞行器的推进要求。 与亚燃冲压发动机相比,流入超燃冲压发动机燃烧室的空气的温度在同样飞行马赫数条件下将明显降低,上述困难可大大缓解。然而目前超燃冲压发动机还存在关键性难点有待克服。若保持现有亚燃冲压发动机的吸气与燃烧方式,通过催化促进燃气解离组分在尾喷管膨胀过程中复合,可以增大冲压发动机的推力,满足高超声速飞行器的推进要求,为高超声速飞行器推进提供新的选择。 本论文主要研究内容如下: (1) 研究了亚燃冲压发动机燃烧室内燃气解离能与飞行马赫数的关系。通过对冻结流、平衡流和有限化学反应速率的流动的数值计算,确定了回收解离能增大推力的潜力。 (2) 以双爆轰技术为基础,建立起一套地面燃气产生装置。所产生的燃气的组分、温度和压力均与冲压发动机在高空飞行时燃气完全相同。调试出总温3200K、总压20Bar(对应来流马赫数6)和试验时间17.5ms以及总温4000K、总压5Bar(对应来流马赫数8)和试验时间12.5ms两种状态参数的试验用燃气。 (3) 建立了基于动量守恒原理的通过皮托管测压力换算推力的测量方法。对催化复合增大推力的实验而言,一般要进行特定流动条件下喷水与未喷水两种情况下推力大小的比较,其精度可以达到2%甚至更高。 (4) 完成了尾喷管喉道下游管壁喷水试验,成功释放出高温燃气中的解离能,有效增大了推力,证实了催化增推的想法是可行的。在来流马赫数6的条件下获得了11.0%的推力增量;在来流马赫数8.0的条件下也获得了11.7%的推力增加。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic biology promises to transform organic synthesis by enabling artificial catalysis in living cells. I start by reviewing the state of the art in this young field and recognizing that new approaches are required for designing enzymes that catalyze nonnatural reactions, in order to expand the scope of biocatalytic transformations. Carbene and nitrene transfers to C=C and C-H bonds are reactions of tremendous synthetic utility that lack biological counterparts. I show that various heme proteins, including cytochrome P450BM3, will catalyze promiscuous levels of olefin cyclopropanation when provided with the appropriate synthetic reagents (e.g., diazoesters and styrene). Only a few amino acid substitutions are required to install synthetically useful levels of stereoselective cyclopropanation activity in P450BM3. Understanding that the ferrous-heme is the active species for catalysis and that the artificial reagents are unable to induce a spin-shift-dependent increase in the redox potential of the ferric P450, I design a high-potential serine-heme ligated P450 (P411) that can efficiently catalyze cyclopropanation using NAD(P)H. Intact E. coli whole-cells expressing P411 are highly efficient asymmetric catalysts for olefin cyclopropanation. I also show that engineered P450s can catalyze intramolecular amination of benzylic C-H bonds from arylsulfonyl azides. Finally, I review other examples of where synthetic reagents have been used to drive the evolution of novel enzymatic activity in the environment and in the laboratory. I invoke preadaptation to explain these observations and propose that other man-invented reactions may also be transferrable to natural enzymes by using a mechanism-based approach for choosing the enzymes and the reagents. Overall, this work shows that existing enzymes can be readily adapted for catalysis of synthetically important reactions not previously observed in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes.

Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O+(g), can protonate most (non-alkane) organic species, whereas H3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the ‘function’ of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided valuable information regarding the structure of aqueous interfaces, but structure alone is inadequate to decipher the function. By similar analogy, theoretical predictions based on classical molecular dynamics have remained limited in their scope.

Recently, we have adapted an analytical electrospray ionization mass spectrometer (ESIMS) for probing reactions at the gas-liquid interface in real time. This technique is direct, surface-specific,and provides unambiguous mass-to-charge ratios of interfacial species. With this innovation, we have been able to investigate the following:

1. How do anions mediate proton transfers at the air-water interface?

2. What is the basis for the negative surface potential at the air-water interface?

3. What is the mechanism for catalysis ‘on-water’?

In addition to our experiments with the ESIMS, we applied quantum mechanics and molecular dynamics to simulate our experiments toward gaining insight at the molecular scale. Our results unambiguously demonstrated the role of electrostatic-reorganization of interfacial water during proton transfer events. With our experimental and theoretical results on the ‘superacidity’ of the surface of mildly acidic water, we also explored implications on atmospheric chemistry and green chemistry. Our most recent results explained the basis for the negative charge of the air-water interface and showed that the water-hydrophobe interface could serve as a site for enhanced autodissociation of water compared to the condensed phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the design and synthesis of a true, heterogeneous, asymmetric catalyst. The catalyst consists of a thin film that resides on a high-surface- area hydrophilic solid and is composed of a chiral, hydrophilic organometallic complex dissolved in ethylene glycol. Reactions of prochiral organic reactants take place predominantly at the ethylene glycol-bulk organic interface.

The synthesis of this new heterogeneous catalyst is accomplished in a series of designed steps. A novel, water-soluble, tetrasulfonated 2,2'-bis (diphenylphosphino)-1,1'-binaphthyl (BINAP-4S0_3Na) is synthesized by direct sulfonation of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP). The rhodium (I) complex of BINAP-4SO_3Na is prepared and is shown to be the first homogeneous catalyst to perform asymmetric reductions of prochiral 2-acetamidoacrylic acids in neat water with enantioselectivities as high as those obtained in non-aqueous solvents. The ruthenium (II) complex, [Ru(BINAP-4SO_3Na)(benzene)Cl]Cl is also synthesized and exhibits a broader substrate specificity as well as higher enantioselectivities for the homogeneous asymmetric reduction of prochiral 2-acylamino acid precursors in water. Aquation of the ruthenium-chloro bond in water is found to be detrimental to the enantioselectivity with some substrates. Replacement of water by ethylene glycol results in the same high e.e's as those found in neat methanol. The ruthenium complex is impregnated onto a controlled pore-size glass CPG-240 by the incipient wetness technique. Anhydrous ethylene glycol is used as the immobilizing agent in this heterogeneous catalyst, and a non-polar 1:1 mixture of chloroform and cyclohexane is employed as the organic phase.

Asymmetric reduction of 2-(6'-methoxy-2'-naphthyl)acrylic acid to the non-steroidal anti-inflammatory agent, naproxen, is accomplished with this heterogeneous catalyst at a third of the rate observed in homogeneous solution with an e.e. of 96% at a reaction temperature of 3°C and 1,400 psig of hydrogen. No leaching of the ruthenium complex into the bulk organic phase is found at a detection limit of 32 ppb. Recycling of the catalyst is possible without any loss in enantioselectivity. Long-term stability of this new heterogeneous catalyst is proven by a self-assembly test. That is, under the reaction conditions, the individual components of the present catalytic system self-assemble into the supported-catalyst configuration.

The strategies outlined here for the design and synthesis of this new heterogeneous catalyst are general, and can hopefully be applied to the development of other heterogeneous, asymmetric catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Past workers in this group as well as in others have made considerable progress in the understanding and development of the ring-opening metathesis polymerization (ROMP) technique. Through these efforts, ROMP chemistry has become something of an organometallic success story. Extensive work was devoted to trying to identify the catalytically active species in classical reaction mixtures of early metal halides and alkyl aluminum compounds. Through this work, a mechanism involving the interconversion of metal carbenes and metallacyclobutanes was proposed. This preliminary work finally led to the isolation and characterization of stable metal carbene and metallacyclobutane complexes. As anticipated, these well-characterized complexes were shown to be active catalysts. In a select number of cases, these catalysts have been shown to catalyze the living polymerization of strained rings such as norbornene. The synthetic control offered by these living systems places them in a unique category of metal catalyzed reactions. To take full advantage of these new catalysts, two approaches should be explored. The first takes advantage of the unusual fact that all of the unsaturation present in the monomer is conserved in the polymer product. This makes ROMP techniques ideal for the synthesis of highly unsaturated, and fully conjugated polymers, which find uses in a variety of applications. This area is currently under intense investigation. The second aspect, which should lend itself to fruitful investigations, is expanding the utility of these catalysts through the living polymerization of monomers containing interesting functional groups. Polymer properties can be dramatically altered by the incorporation of functional groups. It is this latter aspect which will be addressed in this work.

After a general introduction to both the ring-opening metathesis reaction (Chapter 1) and the polymerization of fuctionalized monomers by transition metal catalysts (Chapter 2), the limits of the existing living ROMP catalysts with functionalized monomers are examined in Chapter 3. Because of the stringent limitations of these early metal catalysts, efforts were focused on catalysts based on ruthenium complexes. Although not living, and displaying unusually long induction periods, these catalysts show high promise for future investigations directed at the development of catalysts for the living polymerization of functionalized monomers. In an attempt to develop useful catalysts based on these ruthenium complexes, efforts to increase their initiation rates are presented in Chapter 4. This work eventually led to the discovery that these catalysts are highly active in aqueous solution, providing the opportunity to develop aqueous emulsion ROMP systems. Recycling the aqueous catalysts led to the discovery that the ruthenium complexes become more activated with use. Investigations of these recycled solutions uncovered new ruthenium-olefin complexes, which are implicated in the activation process. Although our original goal of developing living ROMP catalysts for the polymerization of fuctionalized monomers is yet to be realized, it is hoped that this work provides a foundation from which future investigations can be launched.

In the last chapter, the ionophoric properties of the poly(7-oxanobornene) materials is briefly discussed. Their limited use as acyclic host polymers led to investigations into the fabrication of ion-permeable membranes fashioned from these materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymmetric construction of quaternary stereocenters is a topic of great interest in the organic chemistry community given their prevalence in natural products and biologically active molecules. Over the last decade, the Stoltz group has pursued the synthesis of this challenging motif via a palladium-catalyzed allylic alkylation using chiral phosphinooxazoline (PHOX) ligands. Recent results indicate that the alkylation of lactams and imides consistently proceeds with enantioselectivities substantially higher than any other substrate class previously examined in this system. This observation prompted exploration of the characteristics that distinguish these molecules as superior alkylation substrates, resulting in newfound insights and marked improvements in the allylic alkylation of carbocyclic compounds.

General routes to cyclopentanoid and cycloheptanoid core structures have been developed that incorporate the palladium-catalyzed allylic alkylation as a key transformation. The unique reactivity of α-quaternary vinylogous esters upon addition of hydride or organometallic reagents enables divergent access to γ-quaternary acylcyclopentenes or cycloheptenones through respective ring contraction or carbonyl transposition pathways. Derivatization of the resulting molecules provides a series of mono-, bi-, and tricyclic systems that can serve as valuable intermediates for the total synthesis of complex natural products.

The allylic alkylation and ring contraction methodology has been employed to prepare variably functionalized bicyclo[5.3.0]decane molecules and enables the enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-p-anisoyloxydauc-4,8-diene. This route overcomes the challenge of accessing β-substituted acylcyclopentenes by employing a siloxyenone to effect the Grignard addition and ring opening in a single step. Subsequent ring-closing metathesis and aldol reactions form the hydroazulene core of these targets. Derivatization of a key enone intermediate allows access to either the daucane sesquiterpene or sphenobolane diterpene carbon skeletons, as well as other oxygenated scaffolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the mechanism of selective metallization on glass surfaces with the assistance of femtosecond laser irradiation followed by electroless plating. Irradiation of femtosecond laser makes it possible to selectively deposit copper microstructures in the irradiated area on glass surfaces coated with silver nitrate films. The energy-dispersive X-ray (EDX) analyses reveal that silver atoms are produced on the surface of grooves formed by laser ablation, which serve as catalysis seeds for subsequent electroless copper plating. (C) 2008 Elsevier B.V. All rights reserved.